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a b s t r a c t

This article presents a new method for determining optimal transit routes. The Transit Route Arc-Node
Service Maximization model is a mathematical model that maximizes the service value of a route, rather
than minimizing cost. Cost (distance) is considered as a budget constraint on the extent of the route. The
mathematical formulation modifies and exploits the structure of linear programming problems designed
for the traveling salesman problem. An innovative divide-and-conquer solution procedure is presented
that not only makes the transit routing problem tractable, but also provides a range of high-quality alter-
nate routes for consideration, some of which have substantially varying geometries. Variant formulations
are provided for several common transit route types. The model is tested through its application to an
existing street network in Richardson, TX. Optimal numeric results are obtained for several problem
instances, and these results demonstrate that increased route cost is not correlated with increased service
provision.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The primary objective of this article is to outline a new method
for determining optimal transit routes, such that a service value for
the route is maximized. Although transit planners may enjoy the
prospect of developing a set of entirely new routes for a complete
transit system based on some notion of optimality, this is not fea-
sible for transit agencies that have been in operation for some time.
Those transit agencies that have provided service along established
routes must respect the existing travel patterns that they helped
create among the population being currently served. This suggests
that incremental changes in route structure could be implemented,
and that these minor changes should reflect changes in the service
values along the route. Such changes can take the form of modifi-
cations that create train feeder routes (Quadrifoglio and Li, 2009;
Shrivastava and O’Mahony, 2006, 2009; Verma and Dhingra,
2005) or urban circulator routes (Cornillie, 2008; Lownes and
Machemehl, 2008, 2010), or modifications to serve newly devel-
oped areas with route extensions (Matisziw et al., 2006). Moreover,
due to monetary resource constraints, transit agencies can be
forced to reduce the cost of a route while still providing service
to that population (Zhou et al., 2008). In this case, the agency does
not want the minimum cost route, but rather the route that will
provide the maximum service to the population given the cost con-
straints imposed on them. Service orientation has been described
ll rights reserved.
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as one of the most important decisions that transit managers can
make (Brown and Thompson, 2008).

In order to address this issue, this article presents the Transit
Route Arc-Node Service Maximization (TRANSMax) model. TRANS-
Max is a mathematical model that maximizes the overall service
value of a route rather than attempting to minimize cost. Cost or
distance is considered as a constraint on the extent of the route.
The service value of a route is a function of the service values on
nodes which are intersections of the street network, and the ser-
vice values of the arcs connecting those nodes. Service values can
be a function of the population, employment opportunities, and
other measures of route attractiveness given their access to the
bus route. The mathematical formulation of the TRANSMax model
borrows from the structure of linear programming problems
designed for both the traveling salesman problem and the vehicle
routing problem. A solution procedure designed to exploit this for-
mulation is outlined. This method serves to not only make the
transit routing problem tractable by dividing the problem into
smaller sub-problems, but it also provides a range of high-quality
alternate routes for consideration in the decision making process.

In the following section the literature regarding transit route
determination is reviewed, with particular focus on the objectives
to be optimized, whether or not single or multiple route systems
are determined, the range of solution procedures for optimal tran-
sit route problems, and the rationale for service maximization. The
TRANSMax formulation is then presented with an explanation of
its components followed by a description of a three stage solution
procedure. Computational experience with the TRANSMax model
is gained through its application to an existing street network in
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Richardson, TX. Optimal numeric results are obtained for several
problem instances.
2. Literature review

2.1. Cost minimization and multiple objectives

From their earliest incarnations vehicle routing problems
(VRPs) have been formulated as distance or cost minimization
problems (Balas, 1989; Clarke and Wright, 1964; Dantzig and
Ramser, 1959; Flood, 1956; Kulkarni and Bhave, 1985). This over-
whelming bias has persisted, as demonstrated by a review article
(Chien and Yang, 2000) where nine out of ten research articles
regarding transit route design written between 1967 and 1998 em-
ployed a total cost-minimization objective. The transit cost is
nearly always formulated as a generalized measure of operator
costs (List, 1990), user costs (Dubois et al., 1979; Silman et al.,
1974), or both operator and user costs (Ceder, 2001; Ceder and Is-
raeli, 1998; Ceder and Wilson, 1986; Chien and Yang, 2000; Chien
et al., 2001; Chien et al., 2003; Chien and Qin, 2004; Lampkin and
Saalmans, 1967; Mauttone and Urquhart, 2009; Newell, 1979;
Wang and Po, 2001; Zhao and Zeng, 2007). The few exceptions in-
clude a model that maximizes consumer surplus (Hasselström,
1981), a model that seeks to maximize the number of public trans-
port passengers (Van Nes et al., 1988), a model that seeks equity
among users (Bowerman et al., 1995), and models that seek to
minimize transfers while encouraging route directness and de-
mand coverage (Zhao et al., 2005; Zhao and Gan, 2003).

A substantial subset of the literature posits that the transporta-
tion network planning problem is one that is not captured well by
any single optimization objective, but rather multiple objectives
should be considered (Current and Marsh, 1993; Current and
Min, 1986; Jozefowiez et al., 2008). Among the proposed
multi-objective models are those that tradeoff maximal covering
of demand against minimizing distance (or cost) for single routes
(Current and Pirkul, 1994; Current et al., 1984a,b, 1985; Current
and Schilling, 1989) and multiple routes (Wu and Murray, 2005),
those that seek to both minimize cost and maximize accessibility
in terms of distance traveled (Current et al., 1987; Current and
Schilling, 1994), and those that tradeoff access with service
efficiency (Murray, 2003; Murray and Wu, 2003). These multi-
objective approaches to transit route design are often said to
optimize total welfare (Kepaptsoglou and Karlaftis, 2009). Clearly,
multi-objective approaches to transit route planning allow for a
more comprehensive examination of factors that contribute to
transit use and operations. However, the present research focuses
on the particular problem of maximizing service values for transit
routes in the presence of a cost constraint. It is known from expe-
rience that this problem occurs frequently in transit planning oper-
ations, generally as a result of new budgets imposed on planners.
2.2. Individual vs. system route design and solution procedures

Although much valuable research has been conducted on the
problem of determining an optimal or near-optimal set, or net-
work, of routes for an entire transit system, (Ceder and Wilson,
1986; Chakroborty and Dwivedi, 2002; List, 1990; Silman et al.,
1974), many opportunities exist for making incremental changes
to transit routes when conditions change. It has been shown that
individual bus routes can be improved within a set of political
and economic constraints (Matisziw et al., 2006), that relocating
bus routes can reduce operating cost or improve route accessibility
(Chien et al., 2001), and that these design choices can influence the
effectiveness of strategic long-term planning and capital invest-
ment decisions (Magnanti and Wong, 1984). Even small changes
in bus operations have been shown to have a dramatic influence
on bus system performance (Fernandez and Tyler, 2005). Perhaps
most importantly, the changes in service provision due to bus
route changes brought on by fiscal constraints or other planning
decisions can elicit strong reactions from the populations being
served and their political representatives (Clark, 2009; Dresser,
2005; Sutton, 2009). This suggests that an objective method for
determining the route that maximizes service under such con-
straints would serve as positive tool for dialog during the planning
process.

Given the combinatorial complexity of transit system develop-
ment problems, it may be impractical or impossible to obtain opti-
mal solutions for large problem instances. When this is the case,
alternate—though not guaranteed optimal—solution procedures
can be employed. These include formal heuristic (or approximate)
methods to quickly find good transit routes (Bowerman et al.,
1995; Chien and Yang, 2000; Fan and Machemehl, 2008; Fan and
Machemehl, 2004; Mauttone and Urquhart, 2009; Van Nes et al.,
1988; Zhao and Gan, 2003), heuristics based on genetic algorithms
(Chien et al., 2001; Tom and Mohan, 2003; Agrawal and Mathew,
2004) or other procedures with a stochastic element (Fan and
Machemehl, 2006; Yang et al., 2007; Zhao and Zeng, 2006), heuris-
tics that incorporate expert user input in the process (Baaj and
Mahmassani, 1995; Ceder and Wilson, 1986; Lampkin and
Saalmans, 1967; Shih et al., 1998), and heuristics that are entirely
based on expert user experience. The last of these is the most
widely used and perhaps the most important technique for the
majority of transit agencies and is sometimes referred to as manual
route planning (Dubois et al., 1979; Moorthy, 1997). With this
method a transit planner uses his or her knowledge of the area
to be served and their intuitive understanding of the entire route
planning process in order to generate good route alternatives. Sub-
sequent changes to routes are determined by driving through the
area and noting additional service opportunities (e.g. new apart-
ment complexes, new employment or shopping opportunities) on
a map. The authors concur with those who find that the expertise
of transit planners employing the manual method can result in
very good solutions and that the ability of such experts to quickly
react to customer demands and complaints is a valuable asset
(Newell, 1979). However, the solutions determined heuristically
in this way are likely to be suboptimal and without an optimal
solution process there is no way to determine the extent to which
the manual solutions are suboptimal. Lastly, there has recently
been increased interest in the use of simulation methods, such as
agent based modeling and cellular automaton models to replicate
bus behavior (Jiang et al., 2003).

According to the existing literature it has been suggested that
solutions for mathematical programming approaches to transit
route design are inevitably heuristic due to the combinatorial
complexity of the problems (Ceder and Israeli, 1998; Chien et al.,
2001; Dubois et al., 1979; Lampkin and Saalmans, 1967; Shih
et al., 1998). While this may still be true for the determination
of a system of routes, the present research shows that an approach
based on service maximization rather than cost minimization,
that determines a single route in a limited area with a cost con-
straint, allows for guaranteed optimal solution procedures to be
employed.

2.3. Service maximization

This research asserts that minimization of cost is not an appro-
priate measure of bus route optimality for two reasons. First, in the
absence of an additional constraint on a minimum acceptable level
of demand served, the objective of minimizing cost could lead to
very low cost routes that serve little if any demand. Secondly, a
cost-minimization objective presumes that underperforming bus
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routes could be eliminated, when in fact there may be social or
political pressure to keep some variation of those routes in opera-
tion. In practice the primary objective of the operator is not to re-
duce costs, but to provide as much service as possible, as efficiently
as possible, while operating within cost constraints. It has been
noted that the provision of service is the only tangible product per-
ceived by users (Norman, 2003), and that strategic access provision
is an important element in the ongoing regional transportation
planning process (Murray, 2001; Murray et al., 1998).

The service values to be maximized can represent several char-
acteristics of the transit area. Service values could be a function of
the population or population density surrounding the network in
residential areas. There are a number of methods for determining
the population with access to a transit route including area based
(Hsiao et al., 1997), line-based (O’Neill et al., 1992), and point
based (Biba et al., 2010). Similarly, the service values could be
based on the number and size of establishments in commercial
areas, or the number of employees in industrial or manufacturing
centers (Modarres, 2003). From a modeling perspective, service
values could be associated with nodes in the transport network,
with the arcs connecting those nodes, or with both. Arc values
are important in problems such as mail delivery or snow removal,
while node values are considered important in most pick-up and
delivery problems. One study found that aggregation of customers
from arcs to nodes led to improvements in solution times and solu-
tion quality (Oppen and Lokketangen, 2006). Research has shown
that such representational choices can have a significant influence
on research outcomes (Horner and Murray, 2004) and thus should
be made only after careful consideration of the modeling environ-
ment and the operational objectives. The TRANSMax model de-
scribed below allows for both node and arc representations of
demand for service to be employed at the user’s discretion.

Service values can change over time as land uses change. The
construction of a new large apartment complex would increase
the potential service on its associated segments of the network.
Service dynamics of the network can change when stores go out
of business or when employers open new facilities or expand or
contract operations at existing facilities. These changes create an
opportunity to re-evaluate the optimal transit route through that
area.
3. TRANSMax integer programming formulation

The problem to be solved is that of finding an optimal transit
route. If operating costs are seen as a constraint on the optimal
route, an appropriate objective is to maximize service value. When
service values are associated with both arcs and nodes in the net-
work the problem becomes the Transit Route Arc-Node Service
Maximization (TRANSMax) problem. This problem determines
the optimal combination of connected arcs and nodes that will
constitute the route that best serves the transit area. In this section
a mathematical formulation of the TRANSMax problem is pre-
sented and discussed. This is followed by a discussion of a series
of variant constraint formulations.

Perhaps the most well known vehicle routing problem is the
Traveling Salesman Problem (TSP). Unfortunately, formulations
for the TSP are not sufficient by themselves to address the TRANS-
Max problem. The TSP seeks the best route through a known set of
cities, while the stops on an optimal transit route are not known in
advance. However, some constructions designed for the TSP can be
adapted to the transit route problem Flood (1956) proposed a set of
subtour elimination constraints for the (TSP) that perform similar
duty to conservation of flow constraints in the context of maximal
flow problems. Using the notation of Vajda (1961) these con-
straints take the form:
Xm

i¼1

xijt �
Xm

i¼1

xjiðtþ1Þ ¼ 0 for j ¼ 1;2; . . . ;m; t ¼ 1;2; . . . ;m; ð1Þ

where m is the number of cities to be visited, i and j are indices of
cities, and t represents the sequence of arcs in the route. Thus xijt is
the binary decision variable associated with the tth arc in the route
which goes from city i to city j. These constraints require that any
arc entering j on the tth step of the route must have a corresponding
arc exiting j on the subsequent (t + 1) step of the route (or at time
step 1 if t = m). This guarantees a connected route, and therefore
eliminates disconnected subtours. Other constraints in the well-
known TSP formulation require that exactly one step of the route
enter each city, thus only one arc exits each city. While variations
of these constructions have been incorporated into the TRANSMax
formulation, there are several fundamental differences from the
TSP. The objective is to maximize service provision rather than min-
imize cost, and the number of stops—and arcs connecting those
stops—are not known in advance. This latter characteristic demands
an additional step in the solution procedure (discussed in detail be-
low) to determine the best number of stops to include in the
solution.

The general TRANSMax formulation consists of:

Maximize Z ¼
Xm

i¼1

Xm

j¼1

XR

r¼1

ðAij þ NiÞxijr ð2Þ

Subject to :
Xm

i¼1

XR

r¼1

xijr 6 1 for j ¼ 1;2; . . . ;m; ð3Þ

Xm

j¼1

XR

r¼1

xijr 6 1 for i ¼ 1;2; . . . ;m; ð4Þ

Xm

i¼1

xijr �
Xm

i¼1

xjiðrþ1Þ ¼ 0 for j ¼ 1;2; . . . ;m;

r ¼ 1;2; . . . ;R� 1; ð5Þ
Xm

i¼1

Xm

j¼1

xijr ¼ 1 for r ¼ 1;2; . . . ;R; ð6Þ

Xm

i¼1

Xm

j¼1

XR

r¼1

dijxijr 6 D; ð7Þ

where: i and j are indices of nodes; m is the number of nodes in the
network; r is the index of arcs comprising a route; R is the maxi-
mum number of arcs in a route; Aij is the service value associated
with the arc from node i to node j; Ni is the service value associated
with node i; dij is the length of the arc between node i and node j; D
is the maximum length of the route; and xijr is a decision variable
equal to 1 if the arc from i to j is chosen for step r in the route,
and 0 otherwise.

The objective function (2) seeks to maximize the sum of the arc
and node service values for a route, which is comprised of R arcs. In
order to ensure that a complete, connected, non-overlapping route
is generated, constraints (3) require that no more than one arc
entering any node be selected, and constraints (4) require that no
more than one arc exiting a node be selected. Together, constraints
(3) and (4) eliminate the possibility that the route will cross over
itself, in effect serving the same demand twice, and eliminate the
possibility that the route will backtrack over itself since U-turns
are generally not permitted for busses. These inequalities differ
from equality constraints in TSP formulations since the optimal
transit route will not necessarily visit every node in the network.
Constraints (5) require that if an arc enters a node on step r of
the route, an arc exiting that node must be chosen for step r + 1
of the route. Constraints (6) ensure that there will be exactly one
arc chosen for any step in the route. Constraint (7) represents the
distance, cost, or time constraint on the route. The TRANSMax
Model is combinatorially complex. There are (m2*R) variables,
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and 2m + mR + R + 1 constraints in each problem instance. More-
over, as will be shown below many problem instances may need
to be solved for a range of values for R.

The general TRANSMax formulation can be modified based on
additional constraints on the route geometry. For example, it
may be that the route must begin and end at the same point, cre-
ating a loop. A generic loop constraint where the starting and end-
ing points are the same, but unspecified, can be formulated in the
following way:

Xm

j¼1

xij1 �
Xm

j¼1

xjiR ¼ 0 for i ¼ 1;2; . . . ;m: ð8Þ

Constraints (8) demand that for each node i either an arc leaving the
node on step one and an arc entering the node on the final step of
the route will be chosen, or node i will not be the starting and end-
ing point of the route. Node i is still eligible to be included at some
other step of the route. Constraints (3) and (4) continue to limit the
number of arcs entering and exiting each node including the start-
ing/ending point of the loop.

Additional constraints may be added if a particular point of
interest must be included in the route due to assets or facilities
at that location. As an example it is common to have circulator
bus routes that begin and end at transit centers or rail stations. This
variation of a loop constraint can be formulated in the following
way:

Xm

j¼1

xsj1 ¼ 1; ð9Þ

Xm

i¼1

xisR ¼ 1; ð10Þ

where s represents the node at which the station is located and R is
the number of arcs in the route. Constraint (9) ensures that the arc
that represents the first step of the route must begin at the station.
Constraint (10) ensures that the last step of the route re-enters the
station node. Together these constraints force the route to be a
closed loop beginning and ending at the station.

If a route is being designed to collect people from the service
area and deliver them to a single fixed point, this is termed a feeder
route. In this case only constraint (9) or constraint (10) should be
implemented. Choosing either will give the same optimal result.
This results in a chain of arcs that is fixed at one end on the station
and extends to some unspecified point in the service area in such a
way that the service value is maximized without violating the dis-
tance or cost constraint.

Similarly, variants of these constraints can constrain the route
to transfers riders from one station to another. This can be accom-
plished using constraint (9) as it appears above, with a small mod-
ification to constraint (10) including a new ending station, e:

Xm

i¼1

xieR ¼ 1: ð11Þ

In any of the variant formulations given above, it may be that signif-
icant points of interest must be visited along the route, but they do
not necessarily act as stations or terminal points. These waypoints
may be large employment or commercial centers that are consid-
ered desirable points to be served by the route. Waypoint con-
straints can take the following form:

Xm

j¼1

XR

r¼1

xwjr þ
Xm

i¼1

XR

r¼1

xiwr P 2; ð12Þ

where w is the location of the desired waypoint.
Considered as a whole, Eqs. (2)–(12) provide for a family of for-

mulations that allow optimal routes to be defined under a variety
of circumstances. The variant constraints can be combined to pro-
duce a diverse assortment of route types (see Fig. 2). Given this
flexible framework the challenge remains to demonstrate that
optimal solutions to practical instances of the TRANSMax problem
can be achieved.
4. Solution methodology

Solving the TRANSMax model involves a three stage analytical
procedure. The first stage uses a network reduction heuristic to
eliminate network features that cannot logically be included in
the optimal solution to the routing problem. Since the optimal
number of arcs in the route (the best value for R) is not known
in advance, the second stage entails determining the range of pos-
sible values for the number of arcs in the optimal route. The third
and final stage consists of solving instances of the TRANSMax mod-
el for all values of R in that possible range in order to exhaustively
determine the global optimal solution, while additionally provid-
ing a range of near-optimal solutions. Each of these three stages
is explained in more detail below.

Given the combinatorial complexity of network routing prob-
lems and the desire to find optimal solutions, the smallest possible
network should be used for analysis. A reduction in the number of
nodes and arcs in turn reduces the number of constraints and vari-
ables in the linear programming formulation, which is likely to re-
duce the solution time. Consider an instance of the TRANSMax
problem where the goal is to determine the optimal route that
both begins and ends at a central train station. This loop route is
not permitted to cross itself or retrace itself. Based on these goals
and constraints, a subset of the arcs in the transit network can
be logically eliminated from consideration for routes, thus reduc-
ing the size of the problem. In this instance, this is done by evalu-
ating two shortest paths for each node in the network. The first
shortest path is simply the shortest path from the station to the
node under examination. The second shortest path is the shortest
path back from the node to the station that does not employ any
arcs or nodes that were in the first shortest path. The sum of these
paths is the length of the shortest possible loop from (and to) the
station that passes through that node (and meets the other route
constraints). If the length of that loop is greater than the distance
constraint value in the model (D in constraint (7)), that node could
not logically be part of the optimal loop route, and therefore its
elimination could not possibly influence the optimal route solution
procedure to follow. When that is the case, both the node itself,
and any arcs incident to it, can be eliminated from the network un-
der consideration. Fig. 1 shows the entire network in light grey,
with the subset of arcs that remain under consideration (darker
grey) after the heuristic is applied. While this process is heuristic
in the sense that it may be possible to generate methods that even
further reduce the size of the network prior to optimization, it
should be noted again that this procedure eliminates only network
arcs that could not possibly influence the optimal route determina-
tion to follow, and thus does not influence the capability of the en-
tire three stage solution process to achieve global optimality.

Other route types (linear or radial) and their associated con-
straint sets demand variations on this network reduction heuristic.
For simple linear routes extending from a station a single shortest
path could be applied. For routes between known points, a k-short-
est path algorithm that is permitted to run until paths are found
that exceed the distance constraint could be implemented. It
should be noted that, while these methods employ well-known
and efficient shortest path algorithms, the extent to which the net-
work will be pruned by these methods will be a function of the
type of optimal route to be determined, the distance constraint
value, and the nature of the network itself. Moreover, the
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network-reduction step is not absolutely necessary for the deter-
mination of global optimal solutions. While this step reduces the
size of the problem, likely leading to faster solution times, the opti-
mal solution will be reached (given sufficient time and memory) by
the subsequent solution steps, whether or not the network is
pruned.

The second stage in solving the TRANSMax model involves
determining the range of possible values for the number of arcs
in the optimal route. In contrast to the TSP, for the transit routing
problem the number of stops (or cities) is not known in advance.
Therefore, the number of links in the optimal route (the value of
R) is also unknown. This has both positive and negative conse-
quences. The most significant negative consequence is that the
problem must be solved multiple times, across a range of values
for R, in order to find the global optimal solution. Conversely, as
will be shown, these multiple problem instances provide a set of
high-quality alternate routes for decision-makers to evaluate.

Consider again the loop route example discussed above, where
no overlaps or crossings may occur. Under these conditions, by
observation, the lower bound of the possible range for R when
determining a loop on a network is three. Considering the highly
combinatorially complex nature of the route generation problem,
it is desirable to have as tight as possible an upper bound on the
value of R. The upper bound on the value of R can be determined
by the following procedure:

(1) Order the arcs in the network by length (or other cost to tra-
verse) from smallest to largest.

(2) Calculating a running total of length from that ordered list.
(3) When that total comes as close as possible to the distance

constraint value (D) for the route without exceeding it, stop.
(4) The number of arcs that contribute to that sum is the upper

bound on the value of R.

This bound is based on the fact that if, in the unlikely event that
the shortest (least cost) arcs in the network could be used to create
the optimal route, then you would have a route that also used the
largest possible number of arcs. Using any arc not in that set (all of
which are longer than all of the arcs in that set) to form a better
route would require removing at least two arcs from that set in or-
der to avoid violating the distance constraint. Therefore, R can only
go down from that value with any replacement. Although it is
likely that these smallest arcs do not form a valid route in terms
of the other constraints (particularly the contiguity constraints),
the exhaustive search procedure requires that each value in this
range of R be evaluated.

One value in this range of R will provide the largest objective
function value. Although it may be unintuitive, the largest value
of R that results in a feasible solution will not necessarily provide
the global optimal solution. Optimal solutions can be found for in-
stances with larger values of R, however, these optimal routes may
need to employ arcs with smaller service values in order to
meet all of the contiguity and looping constraints. Therefore, a
route with a smaller number of arcs (R) may result in a higher total
service value. This occurs in the example solution provided below.

The third step in the TRANSMax solution procedure is to solve
optimally for each value of R. The TRANSMax model can be solved
optimally using a combination of the Simplex method (Dantzig,
1957) and a branch and bound technique to determine the integer
optimal solution. In this research ILOG CPlex version 8.1 was em-
ployed to implement these procedures. The results of this three
stage process are outlined below.

5. Results

5.1. Data

The model described above was tested through an application
to the actual street network for a portion of Richardson, TX
(Fig. 1). This area is defined by a three-mile radius around a Dallas
Area Rapid Transit (DART) light rail station, which represents a
waypoint for several bus routes and a stop for the light rail system.
For the purposes of analysis, only those streets in this service area
that could support bus traffic (given the available street attributes
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and traffic control data) were selected. These streets have sufficient
width to accommodate two-way traffic in addition to parked cars.
The Geographic Information Systems (GIS) department of the city
of Richardson employs a dual carriageway network representation
for some of their arterial streets (Curtin et al., 2007). Since this rep-
resentation did not add to the analysis of optimal routes and in fact
added nodes and arcs that would complicate the solution
procedure, carriageways were aggregated into a single centerline
representation.

Since the objective of the TRANSMax problem is to maximize
service values on arcs and nodes, service values were assigned to
the network. Arc service values were assigned based on a function
of the number of potential transit stops along the arc. This does de-
mand acceptance of the assumption that more potential stops
along an arc equates to more potential demand that can be served.
Node service values were assigned with a random number gener-
ator since actual service values were not available at the time of
this research. While the authors recognize that this is far from
the ideal dataset to employ, the goal of this article is demonstrate
the formulation of the TRANSMax model and the usefulness of
both the model itself and its solution procedure. The service values
are constants for any instance of the problem, and therefore have
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no effect on the combinatorial complexity of the problem or the
implementation of the solution procedure. That said, future re-
search will employ a means of determining the population with ac-
cess to the transit route as a measure of service value (Biba et al.,
2010).

Distance values were computed between all adjacent nodes. A
user of the TRANSMax model could choose a maximum route dis-
tance value (D) based on a number of factors or combination of fac-
tors, including—but not limited to—the maximum time that
passengers would accept for a complete route, the cost of operating
the vehicle by distance, or the range of the vehicle. Again, this va-
lue is a constant in the model that must be supplied by the user,
and has no influence on the complexity or solution time for the
problem. For the example presented here, the maximum route dis-
tance value (D) was determined based on an estimation of the
average speed of buses (10 miles/hour) and a maximum route tra-
vel time of 50 minutes. The 50 minute limit is a common maxi-
mum used in the DART system. This limit allows bus drivers a
recovery period between trips on routes with a 1 hour cycle time.
Recovery periods (or rest breaks) for drivers are known to reduce
driver stress and fatigue leading to fewer accidents (Tse et al.,
2006; Greiner et al., 1998). Given these constrains, the value of D
in this instance of the TRANSMax model is 13.4 km (8.33 miles).

5.2. Computational experience

Figs. 4–6 show the results of solving the TRANSMax model for
every feasible value of R, with constraints that require a circulator
route centered on a train station. Most importantly, these results
demonstrate that an integer programming approach to transit
route determination is viable. Guaranteed optimal solutions can
be determined for an area that comprises a normal transit route
service area, without resorting to heuristic or other approximate
methods. The solution time for all feasible values of R was roughly
one day of computer time (Fig. 3). In the context of determining
new, single, fixed routes for a transit organization this solution
time is more than reasonable. Since transit routes are not generally
redesigned on a weekly, monthly, or even yearly basis, a single day
of solution time is more than sufficient to support the planning
process.

Moreover, these results provide a wealth of alternatives to deci-
sion makers for evaluation and implementation. Note that in Fig. 4
Fig. 3. Solution times for the f
there are 10 solutions that have an objective function value that is
within 10% of the optimal objective function value. This means that
there are 10 different ‘‘good” routes that could be implemented by
a transit agency.

For the station loop instance solved here, the largest possible
value of R is 49, although the results in the following section dem-
onstrate that there is no feasible solution with an R value greater
than 35.

It should also be noted that the route distance is not necessarily
a good proxy for the route objective function value. In our results
18 of the 31 optimal solutions for different values of R, have
distance values within 4% of the maximum distance limit of
13.4 km (Fig. 5). These same solutions have objective function val-
ues that range from roughly 2200 to 3250. This suggests that heu-
ristic or manual methods that attempt to determine the optimal
solution through maximizing the distance of the route can lead
to significantly sub-optimal solutions.

Additionally, these alternate routes can vary substantially in
terms of their route geometries. Fig. 6 shows the optimal routes
where R = 28 and R = 29. These routes have very similar distance
and objective function values, but they have drastically different
geometries, they share few of the same network links, and they
cover very different sectors of the route service area.

Depending on the distribution of service values across the net-
work, an increase in R does not necessarily mean that there is an
accompanying increase in total service value, or an increase in
route distance. The solution procedure outlined above will find
the optimal solution for every value of R, but as R increases, the
route that is chosen may need to include arcs that don’t have high
service values in order to meet all of the model constraints. An
example is shown in Fig. 7. These results were obtained using
the same network as in the results presented above, with an alter-
nate set of arc and node service values. In this instance the service
value is highest with an R value (R = 27) less than the maximum
feasible R value. In fact, the objective function value when R = 35
is only roughly 25% of optimal. This demonstrates that the model
must be solved for all feasible values of R. It cannot be assumed that
the maximum value of R will generate the maximum service value.

Additional results for the TRANSMax model were obtained
using the variant constraint sets described above. Although de-
tailed results are not presented here, an interesting pattern of solu-
tion difficulty presented itself and deserves note. Contrary to
easible range of R values.



Fig. 4. Objective function values for the feasible range of R values.

Fig. 5. Total route distances for the feasible range of R values.
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expectations, the TRANSMax model was more difficult to solve in
terms of processing time and computer memory in instances with
fewer constraints. This is consistent with the findings of Magnanti
and Wong (1984) who describe the solution benefits of more con-
strained models that provide a tighter bound to the linear pro-
gramming relaxation of the model, and which have a richer
collection of linear programming dual variables.
6. Conclusions and future research

In this research a new method for determining optimal transit
routes has been presented. A formulation for the TRANSMax mod-
el, and variant constraint sets that can be used to generate different
route types (feeder, circulators, etc.) were given. This model max-
imizes the overall service value of a route rather than attempting
to minimize cost. In the TRANSMax model cost is represented by
route distance, and this distance acts as a constraint on the extent
of the route. The mathematical formulation borrows from the
structure of linear programming problems designed for the
traveling salesman problem. A three-step solution procedure was
developed, including (1) a network reduction heuristic, (2) the
determination of the range of possible values for the number of
arcs in the optimal route, and (3) the solution of all instances of
the TRANSMax model using that range of values to exhaustively
determine the global optimal solution. This method provides a
range of high-quality alternate routes for consideration in the deci-
sion making process.

The TRANSMax model was tested on an existing street network.
This test demonstrated that the optimal solution was not necessar-
ily found with the largest feasible value of R, that distance was not
a good determinant of objection function value, and that alternate
route geometries may cover substantially different sectors of the
study area while having very similar lengths and service values.



Fig. 6. Two near-optimal solutions with contrasting route geometries.

Fig. 7. Objective function values for an alternate dataset.
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Most importantly, however, this test confirmed that an optimal
integer programming approach to transit route determination is
viable.

There are many avenues for future research with the TRANSMax
model as a basis. The authors feel that the most dramatic improve-
ment to the method would result from tighter bounds on the range
of values for R. Although our results demonstrate that instances of
the TRANSMax model with all feasible values of R can be solved in
a reasonable amount of time, it would be preferable to solve even
fewer. Similarly, the network reduction element of the solution
procedure could be refined for variant formulations, resulting in
smaller problem instances.

Additional research is needed regarding the best way to deter-
mine service values on nodes and arcs. There are many possible val-
ues that are functions of population, employment, commercial
square footage, or other measures of attraction to destinations on
the network. It may be valuable to differentiate between source
and destination service values, and then balance those service values
on any given route. Additionally, sensitivity analyses could be per-
formed to determine which of the alternate acceptable routes is
more robust under changes in the estimates of service values. Lastly,
the authors envision additional formulations that would model the
capacity of the transit vehicles being routed (Zachariadis et al.,
2009), the frequencies of service across the routes (Zhao and Zeng,
2008), and the simultaneous location of facilities (e.g. depots, bus
stops) alongside optimal routing (Nagy and Salhi, 2007).
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