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This research presents both theoretical results regarding the nature of spatiotemporal clustering on a net-
work, and applied outcomes from examining such clustering with regard to traffic incidents. The analysis
considers fatal traffic incidents in eastern Fairfax County, Virginia and injury incidents in Franklin County,
Ohio. The spatiotemporal analytical methods of Knox and subsequent researchers are reviewed. Specific
methods for performing spatiotemporal analysis are outlined, with special attention given to the inter-
pretation of the results for traffic incidents. An argument is made for conducting spatial and temporal
cluster analyses independently, in addition to spatiotemporal cluster analysis, a comparative analysis
of methods for testing for the significance of spatiotemporal clusters is presented, and suggestions for
delineating critical parameters for the Knox statistic are provided.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Understandably, significant attention is dedicated to the occur-
rence of traffic incidents – particularly those resulting in injuries or
fatalities – among the transportation community, and indeed from
the public at large. The research in this area has informed the ef-
forts of regulatory authorities in the implementation of measures
to reduce the occurrence of traffic incidents in general and traffic
injuries and fatalities more specifically. While there are obvious
behavioral factors that contribute to traffic incidents, an under-
standing of the temporal and spatial characteristics coincident
with those behaviors can contribute to the prevention of traffic
deaths or injuries. Traffic incidents are among those phenomena
that demand an understanding of their spatial and their temporal
components simultaneously. Two incidents that happen reason-
ably close to one another in space, but which occur weeks, months,
or even years apart are not likely to represent a significant cluster
of activities to which remediation efforts should be applied. Simi-
larly, two incidents that occur simultaneously in time, but that
are spatially separated, are not likely to be suggestive of an under-
lying process that can be investigated for traffic incident mitiga-
tion. Unfortunately, little is known about the spatiotemporal
clustering of traffic injuries and fatalities. While knowledge of
the temporal and spatial trends by themselves certainly serve to
focus the efforts of law enforcement and safety officials, the com-
bination of those trends can further inform mitigation strategies.
ll rights reserved.
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This article presents both a series of methods for the examination
of spatial, temporal, and spatiotemporal clusters of network-based
phenomena and a practical application of those methods to the
occurrence of fatal or injurious traffic incidents.

More specifically, the research presented in this article demon-
strates methods for the investigation of spatiotemporal clustering
when it occurs in network space. This research builds on the seminal
work of Black (1991) who examined the spatiotemporal clustering
of traffic accidents on a linear highway segment, by extending the
methods to apply to the complex road networks typically found
in urban areas. Through this extension, this research seeks to
contribute to the recent developments in spatial science where
Euclidean spatial-analytic methods are extended for application to
network space. Moreover, this article presents a comparative anal-
ysis of methods for testing for significance of network spatiotempo-
ral clusters, and presents an innovative technique by which to
determine appropriate spatial and temporal critical distances for
defining spatiotemporal clusters when appropriate critical parame-
ters are unknown.

The structure of the paper is as follows. Section 2 provides a
review of both the seminal works and more recent advances in spa-
tiotemporal cluster analysis and in network-based spatial statistics.
Section 3 describes two study areas and provides descriptive statis-
tics of the research data. Section 4 discusses the methods used in
the examination of temporal, spatial, and spatiotemporal clustering
on a network. Section 5 presents the comparative analysis of signif-
icance tests and suggestions for delineating critical parameters for
those tests. Section 6 provides conclusions and suggestions for
future research.
spatiotemporal clustering of traffic incidents. Computers, Environment and
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2. Literature review – Spatiotemporal clustering and network
spatial statistics

Previous research into spatiotemporal clustering has been pur-
sued most vigorously in the field of epidemiology. Methods for
detecting such clusters have successfully informed the medical
community about the nature of numerous cancers, limb defects,
and neural tube defects (Glass & Mantel, 1969; Knox & Bartlett,
1964; Lloyd & Roberts, 1973; Meighan & Knox, 1965; Roberts, Lau-
rence, & Lloyd, 1975; Smith, Pike, Till, & Hardisty, 1976), among
others. Outside of epidemiology, there are intuitive applications
of spatiotemporal clustering in criminology, defense intelligence,
and in the transportation research discussed here. There have been
significant developments in recent decades with regard to examin-
ing spatiotemporal clustering; particularly the development of
space–time scan statistics (Kulldorff, 2001; Kulldorff, Athas, Feuer,
Miller, & Key, 1998; Kulldorff, Heffernan, Hartman, Assuncao, &
Mostashari, 2005). However, the method presented in the seminal
work of Knox and Bartlett (1964) is still in common use (Kao, Getis,
Brodine, & Burns, 2008; McNally, Rankin, Shirley, Rushton, & Pless-
Mulloli, 2008; Schmertmann, Assuncao, & Potter, 2010). Knox
developed a method for identifying cases of disease that occurred
both close in space and close in time. The frequency of cases that
occur close to one another in both space and time is referred to
as the Knox statistic X or R (the latter term will be used in this
research). David and Barton (1966) demonstrated that Knox’s
conjecture that his statistic followed the Poisson distribution was
accurate. Mantel (1967) provided the permutation variance of
the Knox statistic, describing how to apply Monte Carlo methods
to determine the statistic’s significance.

A potentially problematic characteristic of the Knox Method is
the requirement to identify measures of closeness, or ‘‘critical dis-
tances’’ for both the spatial and temporal distribution of events.
While known epidemiological factors may suggest appropriate
critical distances in the study of disease clusters, for other applica-
tions the critical distances may not be well-defined. Many
researchers have suggested techniques to improve this perceived
shortfall. David and Barton (1966) proposed their own statistic
which compares spatial clusters within subsets of time defined
by the average time interval between events. Mantel (1967) pro-
posed the use of reciprocal transformations for the actual space
and time labels of cases. Klauber (1971) defined a two-sample spa-
tiotemporal clustering test. These and other similar tests are de-
scribed in William’s (1984) thorough review of continuous space
spatiotemporal clustering. Later techniques specific to epidemiol-
ogy include Baker’s (1996) modification of Knox’s method (where
spatiotemporal clusters were detected within a range of acceptable
space and time critical parameters), Jacquez’ (1996) k-nearest
neighbor method (which specified spatiotemporal clusters based
on which points were neighbors in space and time), and a variety
of other researchers who developed scan statistics to enable the
detection of emerging spatiotemporal clusters (Assunção & Correa,
2009; Kulldorff & Hjalmars, 1999; Rogerson, 2001).

The most recent spatiotemporal methodological advances in-
clude a windowed nearest neighbor approach (Pei, Zhou, Zhu, Li,
& Qin, 2010), multi-dimensional map algebra (Mennis, 2010), visu-
alizing clusters in a space–time cube (Nakaya & Yano, 2010), the
use of bivariate kernel density estimators (Mountrakis & Gunson,
2009), cross k-function analysis (Khan, Santiago-Chaparro, Qin, &
Noyce, 2009), and stack-based spatiotemporal clustering (Chang,
Zeng, & Chen, 2008). With the exception of Black (1991), Mountra-
kis and Gunson (2009), and Khan et al. (2009), all of the original
spatiotemporal clustering techniques and their most recent coun-
terparts rely on Euclidean distance measures.
Please cite this article in press as: Eckley, D. C., & Curtin, K. M. Evaluating the
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Yamada and Thill (2004) illustrated the pitfalls of conducting
analysis of network-based phenomena with continuous space
measurements with traffic data from Buffalo, NY. Extensive re-
search has demonstrated the validity of using network measures
to analyze network-based phenomena and numerous continuous
space statistical methods have been extended to network space
(Black, 1992; Miller, 1999; Okabe & Satoh, 2006; Okabe, Satoh, &
Sugihara, 2009; Okabe & Yamada, 2001; Okabe, Yomono, & Kitam-
ura, 1995; Okabe, Yoshikawa, Fujii, & Oikawa, 1988; Okunuki &
Okabe, 2002; Shiode, 2008; Shiode & Shiode, 2009; Yamada & Thill,
2007, 2010). While significant literature exists for the examination
of spatiotemporal clustering in Euclidean space, perhaps only one
author (Black, 1991) has suggested its implementation in network
space.

Based on this review of the literature it is clear that there are
unresolved issues with regard to significance testing and critical
parameter determination in spatiotemporal cluster analysis, and
while there is a strong movement toward recognition of the impor-
tance of applying network-based spatial statistics where appropri-
ate, there is little published research delineating the methods for
doing so with regard to spatiotemporal cluster analysis. Moreover,
there are even fewer studies describing how spatiotemporal clus-
ters of traffic incidents – once identified – can be used to inform
mitigation strategies for traffic management. The research in this
article addresses each of those issues.

3. Study area and data

In order to reach the research goals above, two datasets are em-
ployed in addition to several randomly generated realizations. The
two study areas are the major road network of Franklin County,
Ohio (Fig. 1), and the major road network of Eastern Fairfax
County, Virginia (Fig. 2). In the case of Franklin County, injury-
causing traffic collisions along major roadways throughout 2009
are considered. Those data were obtained through the Ohio
Department of Public Safety’s crash request portal (Kennedy,
2010). Within the Franklin County study area, four datasets repre-
senting injury-causing traffic collisions are examined, one for each
successive 3-month period during 2009. An additional randomly
generated dataset is presented for this study area, created using
SANET’s random points generator tool (Okabe, Okunuki, & Shiode,
2006) to define the event locations on the network, and a random
number generator to define event time stamps.

For the Fairfax County dataset, fatality events were extracted
from the Fatality Analysis and Reporting System (FARS) Encyclope-
dia (FARS., 2010). All of the extracted events contained georefer-
encing information, the date and time of the event, as well as
details about the road surface type and condition (dry, wet, etc.).
This dataset contains the fatality-causing traffic collisions during
the 5-year period between 2004 and 2008 and is complemented
by one randomly generated dataset employing the same spatial
and temporal constraints as the observed data. Table 1 lists
characteristics of each dataset successively. Note the difference
in point density between the two study areas.

These two different datasets were chosen purposefully, in that
this article is presenting a method that should be applicable across
a wide range of potential traffic incident analyses. The clustering of
injury-causing incidents may be quite different from that of fatal
incidents, which in turn may be significantly different from that
of all traffic incidents. Therefore the analyses presented here are
performed on datasets that contain different types of incidents (in-
jury-causing vs. fatal), that are located in different areas (Ohio and
Virginia) and at different scales, and that occur over different time
periods (1 year vs. 5 years).
spatiotemporal clustering of traffic incidents. Computers, Environment and
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Fig. 1. Map of 586 injury-causing traffic collisions on major roads in Franklin County, OH from January to March 2009.
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Both the Fairfax Co. and the Franklin Co. data were analyzed
using appropriate State Plane coordinate systems based on the
1983 North American Datum. The customary projection associated
with these coordinate systems is the Lambert Conformal Conic pro-
jection. Although this choice does not permit distance to be pre-
served everywhere, the parameters of the coordinate systems
ensure that distortion to distance will be minimal. In order to con-
duct analysis of the events in network space, a network dataset
was created from the selected major roadways in the study area
and an origin–destination matrix was computed for all possible
event pairs across the network.
4. Analysis of temporal, spatial, and spatiotemporal clustering
of traffic incidents

Spatiotemporal cluster analysis is one of many techniques uti-
lized in Exploratory Spatial Data Analysis for geographic pattern
recognition (Jacquez, 2008). Recognition of these patterns may illu-
minate underlying space–time processes. To be explicit, a spatial
cluster in this research is a geographic point pattern that demon-
strates an excess number of events relative to the expected num-
ber of events. Likewise, a temporal cluster is the occurrence of a
greater number of events than that expected during a particular
time period. A spatiotemporal cluster exists when an excess num-
ber of events that occur within some geographic space are also
unexpectedly close in time. Practically speaking, while spatial
and temporal clusters may exist independently, spatiotemporal
clusters indicate a correlation between the spatial and temporal
dimension for the given phenomenon. Identifying spatiotemporal
clusters may provide valuable insight beyond the determination
of exclusively spatial or temporal clusters.

When testing a series of events for spatiotemporal clustering,
there is value in first testing for clustering in space and time inde-
pendently. While clustering in either space or time does not guar-
antee space–time clustering, it is shown below that the results of
the independent tests can guide the inputs to the spatiotemporal
tests.
Please cite this article in press as: Eckley, D. C., & Curtin, K. M. Evaluating the
Urban Systems (2012), http://dx.doi.org/10.1016/j.compenvurbsys.2012.06.004
4.1. Temporal clustering

A simple way to test for clustering in time is by considering the
time period as a single line in space, and then performing a linear
nearest neighbor clustering test. Various linear nearest neighbor
tests have been proposed, including those by von Neumann
(1941), Pinder and Witherick (1973), Young (1982), and Okabe
et al. (1995). Young’s and Okabe et al.’s linear nearest neighbor
clustering statistics are chosen here, with a comparison of the re-
sults from each.

Young’s statistic is given by:

M ¼
Pn

i¼1Mi

L

where i is the index of events and n is the total number of events. Mi

is the temporal ‘‘distance’’ or time-lag between the point i and its
nearest neighbor. L is the ‘‘length’’ of the temporal segment. A value
of M close to 0 indicates clustering of the data points, while a value
of M close to n/(n + 1) indicates dispersion in the data.

The first two moments of M are as follows:

EðMÞ ¼ n
2ðnþ 1Þ ; varðMÞ ¼ 2n� 1

12ðnþ 1Þ2

The z-value can be calculated:

z ¼ M � EðMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMÞ

p

An alternative test for linear clustering is given by Okabe et al.
(1995). That test is derived from the seminal work of Clark and
Evans (1954), where the Euclidean distance across space is replaced
with the shortest distance along the line segment:

R ¼
�d

EðdÞ ¼
Pn

i¼1di=n
EðdÞ

Through this formula the observed average nearest neighbor dis-
tance along the line is compared with the expected nearest neigh-
bor distance and the significance of that deviation is determined.
spatiotemporal clustering of traffic incidents. Computers, Environment and
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Fig. 2. Fatality-causing traffic collisions on major roads in Fairfax County, Virginia, 2004–2008.

Table 1
Dataset characteristics.

Dataset/data sub-set Total length of network
links (km)

Temporal period
(days)

Number of events Spatial (km)/temporal
(day) event density

Franklin Co. Collisions (January–March 2009) 930 90 586 0.63/6.51
Franklin Co. Collisions (April–June 2009) 930 91 671 0.72/7.37
Franklin Co. Collisions (July–September 2009) 930 92 653 0.70/7.10
Franklin Co. Collisions (October–December 2009) 930 92 698 0.75/7.59
Random Set (Franklin Co. Network) 930 90 698 0.75/7.76
E. Fairfax Co. Fatalities (2004–2008) 950 1827 125 0.13/0.07
Random Set (E. Fairfax Co. Network) 950 1827 125 0.13/0.07
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The derivations for the expected value and variance of this statistic
are available in Okabe et al. (1995).

Before performing the linear nearest neighbor test for temporal
clustering an appropriate temporal interval must be chosen. The
choice of intervals along the temporal line at which to capture inci-
Please cite this article in press as: Eckley, D. C., & Curtin, K. M. Evaluating the
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dent totals can alter the results of the statistics in conceptually the
same way as the choice of areal units in 2-dimensional space can
influence analyses (commonly termed the Modifiable Areal Unit
Problem). However, while there are ‘‘empirical suggestions’’ for
choosing areal units in quadrat analysis (Bailey & Gatrell, 1996),
spatiotemporal clustering of traffic incidents. Computers, Environment and
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Table 2
Temporal interval analysis for traffic collisions in Franklin County, OH, January–
March, 2009.

Time interval Number of intervals in study
period (January–March 2009)

Number of events per
interval (586 collisions)

Month 3 195.33
Week 12.9 45.43
Day 90 6.51
Hour 2160 0.27
Minute 129600 0.005

Table 3
Results for two linear nearest neighbor statistics given traffic incidents in Franklin
County, OH.

Linear nearest neighbor test Okabe et al.’s test Young’s test

Minimum nearest neighbor distance 0 h 0 h
Maximum nearest neighbor distance 13 h 13 h
Nearest neighbor distance range 13 h 13 h
Average nearest neighbor distance 1.65 h N/A
Expected nearest neighbor distance 1.87 h N/A
Average nearest neighbor statistic 0.88 0.44
Clustered/random/dispersed Clustered Clustered
z-value �1.46 �3.4
Probability (Q) 0.072 0.0003
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no such guideline exists for the temporal case. General rules for
determining areal units suggest that excessive variability among
event counts should be avoided, while still making the intervals
as small as possible to capture the nature of the distribution. One
technique for determining a meaningful interval is to divide the to-
tal number of events in the dataset by the number of temporal
intervals in the study period. This is demonstrated in Table 2. Since
the choice of the minute as the temporal interval would lead to
many intervals having zero values, and since the choice of the
day as the temporal interval would dramatically reduce the num-
ber of intervals, hours were chosen as the best and most expedient
temporal interval for this study.
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A comparison of results for Young and Okabe et al.’s statistics
for the test case are given in Table 3. While the two tests use dif-
ferent standardization techniques, the results are nearly identical.
Young’s test standardizes the statistic by the time period of study
(in this case 2160 h), while Okabe et al.’s statistic uses the total
number of points in the test distribution, 586. Both tests, however,
suggest that the temporal distribution of traffic collisions is slightly
more clustered than the expected random temporal distribution
and the clustering is statistically significant at the 0.1 level.

While the tests do provide very similar results, one benefit of
using Okabe et al.’s statistic is the ability to observe the average
and expected nearest neighbor distance as a function of the tem-
poral interval. From the results here, a basis can be established
from which to determine an appropriate range of temporal critical
distance values when testing for spatiotemporal clusters (see Sec-
tion 5).

4.2. Spatial clustering on a network

Okabe et al. (1995) extended their linear nearest neighbor clus-
tering test outlined above to the network case where the straight-
line distance along a segment is replaced by the shortest-path dis-
tance on a network. In order to test for significance in the case of a
network comprised of many line segments, Monte Carlo methods
are employed using Okabe’s SANET software (2006). In the test
case of 586 traffic collisions distributed across the major road net-
work of Franklin County, by network space measures, the mini-
mum shortest path distance between any two neighbors is 0 m
while the maximum nearest neighbor distance is 7470 m. The
average network nearest neighbor distance is 344 m. As a note, this
result is almost double the value obtained when calculating the
average nearest neighbor distance in continuous space (187 m),
highlighting the importance of using network measures for net-
work phenomena.

Fig. 3 displays the results for the nearest neighbor clustering
statistic. The expected point distribution and the distributions for
significant clustering and dispersion at the 1% and 5% confidence
intervals were derived through 1000 Monte Carlo simulations of
the probability distribution. While the average network nearest
49
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neighbor distance is 344 m, Fig. 3 demonstrates that significant
clustering occurs for all of the events whose nearest neighbor is lo-
cated within 1300 m.

Most importantly, this spatial cluster analysis provides a sense
for the scale at which the 586 traffic collisions are spatially dis-
persed within the Franklin County major road network, in order
to inform the spatiotemporal analysis. These findings now provide
basis for making decisions about appropriate spatial critical dis-
tances when testing for spatiotemporal clusters. Since we know
some collisions are collocated and that significant clustering exists
up to 1300 m, an acceptable range of appropriate spatial critical
distances might exist between 0 and 1300 m. A somewhat more
conservative range is represented between the minimum nearest
neighbor distance and the mean, or in this case, 0 and 344 m. Fur-
ther discussion of these limits is provided in Section 5.
Table 4
Spatiotemporal clusters, Knox R, for the given spatial and temporal critical distance
ranges and associated statistical significance for traffic collisions in Franklin County,
OH, January–March, 2009.

Critical spatial
distance (m)

Critical temporal
distance (h)

Knox-R
value

Probability
(Q)

0 0 0 0.233
1 1 0.498
2 2 0.216

100 0 1 0.408
1 2 0.291
2 3 0.222

200 0 1 0.483
1 2 0.413
2 3 0.368

300 0 1 0.473
1 2 0.489
2 3 0.464

400 0 5 0.000003
1 6 0.004
2 8 0.005

Fig. 4. Map of traffic collisions contributing to spatiotemporal clusters defined by a spatia
OH, January–March, 2009.
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4.3. Spatiotemporal clustering

The goal of this research is to examine spatiotemporal cluster-
ing among traffic incidents. Given that the Knox method is still
in frequent use, we examine it in the context of a network-based
transportation application. A detailed explanation of the general
Knox method can be found in Cliff and Ord (1981) with examples
in Upton and Fingleton (1985). Briefly, the Knox method involves
the construction of two event proximity matrices with the dimen-
sions of n � n for n events. The first matrix defines spatial proxim-
ity where a 1 is associated with cell Xij if event i occurred within
some critical spatial distance d of event j and 0 otherwise. The sec-
ond matrix defines temporal proximity where a 1 is associated
with cell Yij if event i occurred within some critical temporal dis-
tance s of event j and 0 otherwise. For both matrices, if i = j, then
the entry is 0. The Knox statistic is then obtained by the cross-
product:

Rds ¼
Xn

i¼1

Xn

j¼1

XijYij

If no pairs of events are within both the spatial and temporal
critical distances the value of Rds = 0. This would represent sub-
stantial spatiotemporal dispersion in the dataset. If all pairs of
events are within both critical distances, then Rds will equal the
number of pairs of events. This represents the maximum possible
spatiotemporal clustering for the dataset. Most commonly the ob-
served value of Rds will fall between these two extremes, and the
observed value is compared to an expected value to determine
the significance of the result. For rendering simplicity, Rds is here-
after written as R.

The results of testing for spatiotemporal clusters are presented
in Table 4, where the spatial critical distance range was tested at
100 m intervals and the temporal critical distance range at 1 h
intervals. For this initial test, the normal approximation will be
used, although significance testing is dealt with in more detail in
Section 5.

The Knox test is unique in that – while it is a global test – it is
possible to display the pairs of events that contribute to the global
l critical distance of 400 m and a temporal critical distance of 0 h in Franklin County,

spatiotemporal clustering of traffic incidents. Computers, Environment and
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Table 5
Attribute values for incidents contributing to spatiotemporal clusters (Weather Underground, 2009).

ID Date Day of week Time Weather

1 1/16/2009 Friday 4:35:00 PM Record low temp (�14 degrees)
2 1/16/2009 Friday 4:15:00 PM Record low temp (�14 degrees)
3 1/20/2009 Tuesday 9:00:00 AM Record low temp (�1 degree)
4 1/20/2009 Tuesday 9:05:00 AM Record low temp (�1 degree)
5 1/26/2009 Monday 12:06:00 PM Snow
6 1/26/2009 Monday 12:27:00 PM Snow
7 1/30/2009 Friday 6:44:00 PM Snow
8 1/30/2009 Friday 6:44:00 PM Snow
9 2/26/2009 Thursday 6:45:00 PM Rain (0.05 in.)

10 2/26/2009 Thursday 6:13:00 PM Rain (0.05 in.)
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spatiotemporal clustering. To illustrate this capability, the traffic
collisions contributing to the significant spatiotemporal clustering
at a critical spatial distance of 400 m and a critical temporal dis-
tance of 0 h (events occurring within the same hour) are presented
in Fig. 4. The attributes associated with the traffic collisions repre-
senting spatiotemporal clusters are presented in Table 5.

An examination of Fig. 4 and Table 5 reveals likely spatial and
temporal processes contributing to the observed spatiotemporal
clusters. In the case of Fig. 4, the spatiotemporal clusters are lo-
cated near to major intersections or access/exit ramps to multi-
lane highways; locations where vehicles are abruptly changing tra-
vel speed and/or lanes. Table 5 indicates that the spatiotemporal
clusters occurred during periods of extreme weather in every case,
and during weekday rush hour traffic in four out of five clusters.
These associated characteristics allow analysts to generate hypoth-
eses regarding the nature of the incident clusters, and to explore
mitigation strategies to put into practice.

5. Significance testing and critical parameters with the
network-based Knox statistic

Two unresolved issues with regard to the Knox statistic are ex-
plored in this section. First, the question of the most appropriate
significance test for the network based version of the Knox statistic
under varying conditions is explored through a comparative anal-
ysis of the available methods. Second, since the definition of the
critical spatial and temporal distances fundamentally changes the
results of the Knox statistic, a formal examination of the ways in
which such a decision can be made is presented.

5.1. Significance testing for the Knox method

In statistical testing, perhaps the most important element and
greatest challenge is determining the significance of the findings.
Generally speaking, statistical significance is based on how closely
the observed result compares to the expected result across the
known (or assumed) distribution of the test statistic. If the ob-
served result is uncommon when compared to the expected value,
it is said to be significant.

The challenge of determining significance is particularly rele-
vant to the Knox method given that this research is expanding
the statistic into a new spatial domain (network space). Signifi-
cance tests for the general Knox method have been developed
employing the Chi-square distribution, the normal distribution,
and Monte Carlo methods. In this section each significance test is
described, and the results of all three tests on the traffic incident
datasets are presented for comparison, along with a discussion of
multiple testing correction techniques.

5.1.1. Chi-square and Poisson distributions
Since the pairings derived through the Knox method can be

summarized in a two by two contingency table, the Chi-square test
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has been suggested as a means of testing for the significance of the
statistic (Jacquez, 1996; Knox & Bartlett, 1964). The contingency
table is established such that all pairs of events in space and time
are classified according to the chosen critical space and time dis-
tance as either being near or far, for a total of four possible
outcomes:
sp
atiotemporal clustering
 of traffic incidents. C
Space
6d
omputers, Environmen
>d
Time
 6s
 a
 b

>s
 c
 d
where d is the critical spatial distance, s is the critical temporal dis-
tance, a is the number of spatiotemporal pairs, b is the number of
temporal pairs, c is the number of spatial pairs, and d is the number
of all other pairs. In the contingency table above, the value of a is
the Knox statistic, R.

The Chi-square (v2) statistic is then calculated by:

v2 ¼
X

i

X

j

ðOij � EijÞ2

Eij

where Oij is the observed value in cells a through d of the contin-
gency table and Eij is:

Eij ¼
Wi � Cj

N

with Wi the row sum for the observed value Oij, Cj the column sum
for the observed value Oij, and N the grand total number of paired
observations, a + b + c + d.

In this instance the probability of finding the calculated v2 va-
lue may be determined from a Chi-square distribution table with
one degree of freedom (Jacquez, 1996). Generally speaking, the
higher the v2 value, the more rare the result. A large v2 value indi-
cates that somewhere in the contingency table, the observed fre-
quencies for a given cell differ markedly from the expected
values, although the v2 value does not indicate which cell (or cells)
contribute to the observed effect. Baker (1996) notes that because
a majority of the terms in the v2 contingency table will result from
the squared differences between observed and predicted numbers
of close pairs over distances much larger than the specified critical
distances, the power of the v2 test is reduced. If the value of a (the
Knox statistic) is very small, then it has been demonstrated that
the significance of the value may be directly calculated using a sin-
gle-tailed Poisson distribution where the mean is equal to Eij above
(David & Barton, 1966; Knox & Gilman, 1992).

5.1.2. Normal distribution
The significance test that assumes a normal distribution as the

reference distribution has been the most commonly used with the
Knox statistic. Developed for the Knox test initially by David and
t and
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Table 6
Comparison of probabilities for the observed Knox statistic given, the chi-square
distribution, the normal distribution, and three distributions generated through
Monte Carlo simulation.

Franklin Co.
(January–March 2009)

E. Fairfax Co.
(2004–2008)

Distribution d = 400 m, s = 2 h;
R P 8

d = 1214 m,
s = 7 days; R P 1

Chi-square 0.022 0.254
Chi-square (Poisson) 0.147 0.331
Normal 0.030 0.444
Monte Carlo space shuffled 0.057 0.676
Monte Carlo time shuffled 0.072 0.705
Monte Carlo space and time

shuffled
0.253 0.889
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Barton (1966), the details of the calculations for significance test-
ing according to a normal approximation can be found in Upton
and Fingleton (1985). It is generally accepted that when sample
sizes are large this is an appropriate distribution for significance
testing, although studies by Mielke (1978) and Siemiatycki
(1978) identify potential exceptions.

5.1.3. Monte Carlo simulations
While originally suggested by Knox and Bartlett (1964), Mantel

(1967) provided details for generating a reference distribution for
the Knox statistic using Monte Carlo simulations. The process in-
volves the repeated randomization of event labels, then calculating
the Knox statistic at each iteration, until enough values have been
generated to build an empirical distribution adequate for signifi-
cance testing. While there is no standard required number of
iterations the literature suggests that 1000–10,000 repetitions
are sufficient. In order to determine the probability value of the
observed Knox statistic, the proportion of the right hand tail of
the reference distribution whose simulated Knox values are equal
to or greater than the original statistic is calculated.

5.1.4. Comparisons of significance testing methods
All of the methods described above were implemented on the

Franklin County and Fairfax County traffic incident datasets. The
empirical reference distribution generated through Monte Carlo
methods is the most easily justifiable given the lack of assumptions
it requires. A comparison of the Monte Carlo distribution with the
Poisson distribution (see Fig. 5) shows that the Poisson tendency of
the Knox statistic persists even when the spatial domain and the
phenomenon under study has changed.

Table 6 compares the probability values for the Knox statistic
generated across all of the significance testing methods described
above, for both the Franklin County and the Fairfax County data-
sets. For the Monte Carlo test, results are presented for three tests:
where time labels are shuffled in the randomization, where space
labels are shuffled, and where both time and space labels are
shuffled.

From Table 6 it can be noted that although the Poisson distribu-
tion and the Monte Carlo distribution displayed in Fig. 5 are nearly
identical, the derived probabilities of the observed Knox statistic
based on these distributions is different. Moreover, it is apparent
that the Knox statistic probability based on the normal approxima-
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tion most closely resembles the probability based on the Monte
Carlo generated reference distribution (where space labels are
shuffled). As the Monte Carlo distribution provides the best repre-
sentation of possible Knox values for a given test, the fact that the
normal and Monte Carlo probabilities are similar is further evi-
dence in support of using the normal approximation when an
expedient significance test is required.

In the execution of Monte Carlo simulations for the Knox test,
the literature suggests that which labels are shuffled is immaterial
(Baker, 1996; Jacquez, 1996; Mantel, 1967). Using the data out-
lined here, it is apparent that shuffling the time labels while the
space labels remain fixed, or shuffling the space labels while the
time labels remain fixed, provide very similar results. However, if
both time and space labels are shuffled concurrently, a very differ-
ent reference distribution is produced. With this distribution, the
probability of obtaining a value of the Knox statistic that is more
extreme than the observed value is greater than with either of
the single-shuffle distributions. (Figs. 6 and 7). This discrepancy
raises questions regarding the generation of the Monte Carlo distri-
butions. Since the test is examining both spatial and temporal clus-
tering simultaneously (with the null hypothesis that there is no
significant spatiotemporal clustering), it seems intuitive that both
elements should be randomized when determining an underlying
distribution. Moreover, since the greater probabilities of larger val-
ues of the Knox statistic are found with the space–time randomiza-
tion, then this method would be one that is more conservative than
the other approaches. Questions as to the nature of the exact
9 10 11 12 13 14 15 16

ox R

Monte Carlo
Distribution

Poisson Distribution

ions of spatiotemporal clusters in traffic collisions in Franklin County, OH, January–
e reference distribution mean of 4.24.
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hypothesis being tested, and consequently the power of the signif-
icance test deserve more thorough examination than this initial
finding allows. This is an area that is open to future research.
5.1.5. Multiple testing corrections
In order to maintain statistical rigor when multiple tests are

being conducted, methods for adjusting the level at which the ob-
served statistic is determined significant should be considered. Jac-
quez (2008) suggests that the Bonferroni (Sidak, 1967; Simes,
1986), Holm (1979) or Hochberg (1988) methods may be imple-
mented. While the traditional Bonferroni adjustment involves
dividing the desired a by the number of tests performed, or a/n,
this correction can be seen as excessively conservative and im-
proved methods have been suggested. This research examines
the Bonferroni technique and an adjusted method suggested by
Simes (1986). Simes (1986) modification orders the probability
values of all iterations of the performed test, in descending order,
P(1), . . . , P(n). The null hypothesis for a given iteration is rejected if:

PðjÞ 6
ja
n

where j = 1, . . . ,n.
The results of both the traditional and the modified Bonferroni

correction techniques are shown in Table 7. The strictness of the
traditional Bonferroni adjustment is readily apparent when com-
pared to the results of the modified adjustment.
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5.2. Establishing critical parameters for the Knox method

Unlike spatiotemporal studies in epidemiology, where critical
parameters can be defined by the known etiology of disease, for
the case of traffic incidents, critical parameters may be relative
to the spatial and temporal processes involved at the area and time
of study. Therefore, it is recommended to test a range of possible
critical distances (as above) to determine more holistically how
spatiotemporal clustering is present in the data. However, since
multiple tests across those ranges of critical distances will in turn
demand multiple-testing correction techniques, it is desirable to
identify the smallest possible range of critical parameters that re-
veal the presence of clustering. While methods have been pub-
lished for identifying the most significant result within a given
range of spatiotemporal parameters (Baker, 1996), methods for
determining an acceptable range of values when they are unknown
have not. One method for determining this range is to perform
nearest neighbor distance calculations (as in Section 4) on the spa-
tial and temporal components of the datasets. The lower bound for
the parameter range is intuitively the minimum nearest neighbor
distance, as no pair of events can be closer together. The value in
question is the upper bound.

Table 8 contains the results of tests for clustering in the spatial
and temporal dimensions as described in Section 4. Tables 9–11
show the results of spatiotemporal tests where the minimum,
average, and maximum nearest neighbor distances, respectively,
were used as critical parameters for both space and time. For most
6 7 8 9 10 11
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Carlo simulations of the Knox statistic for traffic collisions in E. Fairfax County, VA,
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Table 8
Results of nearest neighbor cluster analysis for the spatial and temporal dimensions.

Nearest neighbor distance results Spatial
dimension

Temporal
dimension

Franklin County Collisions (January–March 2009) Clustered Clustered
Franklin County Collisions (April–June 2009) Clustered Clustered
Franklin County Collisions (July–September 2009) Clustered Clustered
Franklin County Collisions (October–December

2009)
Clustered Clustered

Random set (Franklin County Network) Random Random
Eastern Fairfax County Fatalities (2004–2008) Clustered Random
Random set (Fairfax County Network) Random Random

Table 9
Comparison of the Knox statistic and associated probabilities calculated using the
minimum nearest neighbor distance in space and time as the critical parameters.
Italicized values indicate Q 6 a = 0.05.

Minimum nearest neighbor distance Spatial
(m)

Temporal Knox
R

Prob
(Q)

Franklin County Collisions
(January–March 2009)

0 0 h 0 �

Franklin County Collisions
(April–June 2009)

0 0 h 0 �

Franklin County Collisions
(July–September 2009)

0 0 h 2 0.000

Franklin County Collisions
(October–December 2009)

0 0 h 2 0.012

Random Set (Franklin County Network) 12 0 h 0 �
Eastern Fairfax County Fatalities

(2004–2008)
12 0 d 0 �

Random Set (Fairfax County Network) 112 0 d 0 �

Table 7
Spatiotemporal clusters, Knox R, for the given spatial and temporal critical distance ranges and associated statistical significance for traffic collisions in Franklin County, OH,
January–March, 2009. Italicized values are significant where Q 6 the Bonferroni correction for a = 0.05.

Critical spatial
distance (m)

Critical temporal
distance (h)

Knox-R
value

Probability
(Q)

Modified Bonferroni
correction for a = 0.05

Traditional Bonferroni
correction for a = 0.05

0 0 0 0.233 0.020 0.003
1 1 0.498 0.050 0.003
2 2 0.216 0.013 0.003

100 0 1 0.408 0.030 0.003
1 2 0.291 0.023 0.003
2 3 0.222 0.017 0.003

200 0 1 0.483 0.043 0.003
1 2 0.413 0.033 0.003
2 3 0.368 0.027 0.003

300 0 1 0.473 0.040 0.003
1 2 0.489 0.047 0.003
2 3 0.464 0.037 0.003

400 0 5 0.000003 0.003 0.003
1 6 0.004 0.007 0.003
2 8 0.005 0.010 0.003

Table 10
Comparison of the Knox statistic and associated probabilities calculated using the
average nearest neighbor distance in space and time as the critical parameters.
Italicized values indicate Q 6 a = 0.05.

Average nearest neighbor
distance

Spatial
measure
(m)

Temporal
measure

Knox
R

Probability
(Q)

Franklin County Collisions
(January–March 2009)

344 1.65 h 5 0.073

Franklin County Collisions
(April–June 2009)

305 1.44 h 10 0.000

Franklin County Collisions
(July–September 2009)

301 1.47 h 9 0.000

Franklin County Collisions
(October–December 2009)

276 1.34 h 7 0.003

Random Set (Franklin County
Network)

495 1.56 h 0 �

Eastern Fairfax County Fatalities
(2004–2008)

1214 7 d 1 0.444

Random Set (Fairfax County
Network)

1318 7.27 d 0 �

Table 11
Comparison of the Knox statistic and associated probabilities calculated using the
maximum nearest neighbor distance in space and time as the critical parameters.
Italicized values indicate Q 6 a = 0.05.

Maximum nearest neighbor
distance

Spatial
measure (m)

Temporal
measure

Knox
R

Probability
(Q)

Franklin County Collisions
(January–March 2009)

7470 13 h 449 0.062

Franklin County Collisions
(April–June 2009)

5516 15 h 408 0.192

Franklin County Collisions
(July–September 2009)

5396 21 h 551 0.311

Franklin County Collisions
(October–December 2009)

5224 20 h 749 0.001

Random Set (Franklin County
Network)

3236 16 h 96 0.285

Eastern Fairfax County
Fatalities (2004–2008)

8447 40 d 83 0.048

Random Set (Fairfax County
Network)

8685 29 d 55 0.359
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of the non-random datasets, when the average nearest neighbor
distance was used as the critical parameter for space and time,
the spatiotemporal statistic was significant. Therefore, it seems
appropriate to use the range of values between the minimum
and average nearest neighbor distances as an initial range of inputs
for spatiotemporal critical parameters, based on the assumption
that if the upper bound of the range is significant, then it is possible
that values below this bound will be significant as well. If this
range does not produce a significant test result, then the next log-
ical range to consider is between the average nearest neighbor dis-
tance (lower bound) and maximum nearest neighbor distance
(upper bound). By limiting the critical distance parameters in this
way, the impact of the Bonferroni correction is minimized.
Please cite this article in press as: Eckley, D. C., & Curtin, K. M. Evaluating the
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Note that, as expected, the randomly generated datasets do not
demonstrate spatial or temporal clustering in Table 8. Nor do they
demonstrate any significant spatiotemporal clustering in Tables 9–
11. While this may be obvious, it reinforces the supposition that
spatiotemporal clustering of traffic incidents. Computers, Environment and
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independent clustering in space and time is related to spatiotem-
poral clustering. This also reinforces the importance of testing for
clustering in space and time independently prior to proceeding
with a spatiotemporal analysis. Although significant spatiotempo-
ral clusters may exist when spatial and temporal clusters do not, a
researcher may not wish to invest the time in a spatiotemporal
cluster analysis if there is an absence of clustering in both space
and time independently.
6. Conclusions and future research

Among the contributions of this research are both practical and
theoretical elements. With regard to the former it has been shown
that the spatiotemporal clustering of traffic incidents can be suc-
cessfully examined (a) when spatial and temporal analyses in iso-
lation accompany the spatiotemporal analysis in order to derive
value from all potential components of clustering, (b) when appro-
priate network measures of clustering are employed, (c) when log-
ical critical parameters for the tests are determined, and (d) when
robust and justifiable significance testing is performed. Further, the
research presented in this article demonstrates that the Knox test
for spatiotemporal clustering can be used to identify and visualize
specific observations that contribute to spatiotemporal clustering
(if it is present). In the case of the empirical study presented here,
law enforcement and safety officials may choose to dedicate addi-
tional resources to explain why the spatiotemporal clustering is
occurring at the specified location and time, and subsequently
what measures might be implemented to mitigate the specific traf-
fic risks in the future. Moreover, a general method was presented
for determining logical critical distance ranges for spatiotemporal
cluster analysis based on the results of independent tests of spatial
and temporal clustering.

With regard to more general theoretical contributions several
observations have been made with regard to the distribution of
the Knox statistic when applied to traffic incidents. It has been
shown that the distribution of the Knox statistic on a network gen-
erated through Monte Carlo simulation with space labels random-
ized is closely approximated by the Poisson distribution. Moreover,
shuffling either space or time labels provides a similar distribution.
However, it has also been shown that shuffling both space and time
labels generates a significantly different distribution. This raises
questions regarding what significance test ought to be used by
researchers who do not choose to generate their own empirical dis-
tributions. Although additional research on a range of traffic inci-
dent datasets should be performed, these initial results suggest
that a normal distribution most closely matches the empirical dis-
tribution generated through the randomization of space labels. If
the randomization of both space and time labels is accepted as a
more reasonable assumption for generating empirical distribu-
tions, then it appears that the Poisson distribution may be a better
choice. This was clear in the Franklin County case, while none of
the regular distributions was a close match to the space–time ran-
domized distribution in the Fairfax County case.

As may be expected, these findings have generated significant
questions that are worthy of future research. With regard to the
determination of ranges for critical parameters (for which a logical
basis is established here), it may be possible to limit these ranges
further, thus limiting the number of tests that would need to be
performed. Along these same lines, additional work could better
inform the choice of temporal intervals, in much the same way
as empirical work has led to guidelines for determining areal ex-
tents in other types of analysis.

Additionally, one of the improvements in continuous spatiotem-
poral cluster analysis is the result of work regarding population
shift bias (Klauber & Mustacchi, 1970; Kulldorff & Hjalmars, 1999;
Please cite this article in press as: Eckley, D. C., & Curtin, K. M. Evaluating the
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Mantel, 1967). In terms of network spatial statistics, the topic of
addressing the population-at-risk has been raised in the context
of the network K-function, although not with regard to temporal
clustering (Yamada & Thill, 2004). It may be that the network-based
equivalent of population shift bias is a traffic flow bias. Traffic flow
across the network may have a real effect on the significance of ob-
served spatiotemporal clustering, especially in congested urban
areas where traffic flow fluctuates at regular temporal intervals.
While reliable traffic flow information over short time scales has
historically been difficult to obtain, this is changing due to advances
in traffic monitoring technologies, and therefore this is likely to be a
fruitful area for future research.

This is related to issues regarding the nature of the spatial plat-
form on which incident data exist, since it has been shown that
assumptions of spatial extent can influence the underlying distri-
butions of the derived statistics (Thomas, 1996). Therefore, future
research into spatial considerations such as network edge effects
and data aggregation may provide further insight into the nature
of traffic incidents. Further, the presence of variable values associ-
ated with either the incidents themselves (e.g. damage values or
severity values) or the segments of the network (e.g. aggregated
incident values) may encourage the development and use of spa-
tio-temporal network autocorrelation as an extension of the work
of Black (1992) and Black and Thomas (1998). This network exten-
sion of the Knox test is a global test, meaning it describes the dis-
tribution of points throughout the entire study area, without
addressing the significance of local clusters. The extension of net-
work-based spatiotemporal cluster analysis to the local case statis-
tic appears to be a research area yet to be addressed, but one which
could provide valuable insight for traffic collision analysis (Moons,
Brijs, & Wets, 2009).

Finally, the choices of statistics used here for independent tem-
poral and spatial cluster analysis were based on assumptions about
the representations of the temporal and spatial domains. That is,
the choice of Young’s and Okabe’s linear clustering statistics was
made based on the notion that time of events (more specifically
the time of traffic incident occurrence) is best represented as a
straight line. Similarly, Okabe’s network-based spatial clustering
statistic is chosen under the assumption that a network is the best
representation of the spatial domain on which traffic incidents oc-
cur. Although the network choice for spatial representation is well-
supported by recent literature, the nature of the temporal domain
may need more examination. It is well-known that some traffic
patterns are cyclical; e.g. rush-hours, day-of-week patterns, or sea-
sonal patterns. Future work should examine the ways in which
underlying temporal domains and the critical distances within
them can influence the results of spatiotemporal clustering analy-
ses. Other modeling efforts have chosen to model space and time
as analogous variables in two-dimensional real space (Diggle,
Chetwynd, Häggkvist, & Morris, 1995).

Most importantly, it is hoped that the presence of a rigorous
method for identifying spatiotemporal clusters in traffic accidents
can have a meaningful influence on the prevention of traffic inju-
ries and fatalities. It is hoped that the addition here of methods
that allow investigation of spatiotemporal patterns will provide
some contribution to the field of traffic management, and to spatial
analysis more generally.
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