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NETWORK DATA STRUCTURES

Network data structures for geographic information
science (GISci) are methods for storing network data
sets in a computer in order to support a range of net-
work analysis procedures. Network data sets are
among the most common in GISci and include trans-
portation networks (e.g., road or railroads), utility
networks (e.g., electricity, water, and cable networks),
and commodity networks (e.g., oil and gas pipelines),
among many others. Network data structures must
store the edge and vertex features that populate these
network data sets, the attributes of those features, and,
most important, the topological relationships among
the features. The choice of a network data structure
can significantly influence one’s ability to analyze the
processes that take place across networks. This entry
describes the mathematical basis for network data
structures and reviews several major types of network
data structures as they have been implemented in geo-
graphic information systems (GIS).

Graph Theoretic Basis
of Network Data Structures

The mathematical subdiscipline that underlies network
data structures is termed graph theory. Any graph or
network (the terms are used interchangeably in this
context) consists of connected sets of edges and ver-
tices. Edges may also be referred to as /ines or arcs, and
vertices may be termed junctions, points, or nodes.
Within graph theory, there are methods for measuring
and comparing graphs and principles for proving the
properties of individual graphs or classes of graphs.

Graph theory is not concerned with the shape of the
features that constitute a network, but rather with the
topological properties of those networks. The topo-
logical invariants of a graph are those properties that
are not altered by elastic deformations (such as a
stretching or twisting). Therefore, properties such as
connectivity, adjacency, and incidence are topological
invariants of networks, since they will not change
even if the network is deformed by a cartographic
process. The permanence of these properties allows
them to serve as a basis for describing, measuring, and
analyzing networks.

Graph theoretic descriptions of networks can
include statements of the number of features in the net-
work, the degree of the vertices of the graph (where the

degree of a vertex is the number of edges incident to it),
or the number of cycles in a graph. Descriptions of net-
works can also be based on structural characteristics of
graphs, which allow them to be grouped into idealized
types. Perhaps the most familiar type is tree networks,
which have edge “branches” incident to nodes, but no
cycles are created by the connections among those
nodes. River networks are nearly always modeled as
tree networks. Another common idealized graph type is
the Manhattan network, which is made up of edges
intersecting at right angles. This creates a series of rec-
tangular “blocks” that approximate the street networks
common in many U.S. cities. Other idealized types
include bipartite graphs and hub-and-spoke networks.

If one wishes to quantitatively measure properties
of graphs rather than simply describe them, there is a
set of network indices for that purpose. The simplest
of these is the Beta index, which measures the con-
nectivity of a graph by comparing the number of
edges to the number of vertices. A more connected
graph will have a larger Beta index ratio, since rela-
tively more edges are connecting the vertices. The
Alpha and Gamma indices of connectivity compare
proven properties of graphs with observed properties.
The Alpha index compares the maximum possible
number of fundamental cycles in the graph to the
actual number of fundamental cycles in the graph.
Similarly, the Gamma index compares the maximum
possible number of edges in a graph to the actual
number of edges in a graph. In each case, as the latter
measure approaches the former, the graph is more
completely connected. Other measures exist for
applied instances of networks and consequently
depend on nontopological properties of the network.
The reader is directed to textbooks on the topic
of graph theory for a more comprehensive review of
these and other more advanced techniques.

Implementations of
Network Data Structures in GIS

Nontopological Data Structures

While the graph theoretic definition of a network
remains constant, the ways in which networks are
structured in computer systems have changed dramat-
ically over the history of GISci. The earliest com-
puter-based systems for automated cartography stored
network edges as independent records in a database.
Each record contained a starting and ending point for
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the edge, and the edge was defined as the connection
between those points. Attribute fields could be associ-
ated with each record, and some implementations
included a link from each record to a list of “shape
points” that defined curves in the edges. These records
did not contain any information regarding the topo-
logical properties of the edges and was therefore
termed the nontopological structure (colloquially
known as the “spaghetti” data model).

The advantages of nontopological data models
include the fact that they are easy to understand and
implement, they provide a straightforward platform
for the capture of spatial data through digitizing, and
they are efficient in terms of display for cartographic
purposes. This latter advantage led to the wide accep-
tance of this data structure among computer-aided
drafting software packages. The disadvantages of
nontopological data structures include
the tendency for duplicate edges to be
captured, particularly coincident bound-
aries of polygonal features. This, in turn,
leads to sliver errors, where duplicate
edges are not digitized in precisely the
same way. Most important for the discus-
sion here, the lack of topological infor-
mation in these data structures makes
them essentially useless for network
analysis. Even the most basic graph the-
oretic measures require knowledge of the
connectivity of edges and vertices.

Due to these disadvantages, nontopo-
logical data models were essentially aban-
doned in mainstream GIS, but a variant

customized tools, it is generally considered to be an
inefficient data structure for network analysis.

Topological Data Models

There is broad recognition that knowledge of topo-
logical properties is an important element for many
GIS functions, including network analysis. As has
been well documented elsewhere, the U.S. Census
Bureau is primarily responsible for the inclusion of
topological constructs in GIS data structures due to
the development of the Dual-Incidence Matrix
Encoding (DIME) data structure. Dual incidence
refers to the capture of topological information between
nodes (which nodes are adjacent to each other) and
along lines (which polygons are adjacent to each
other). Figure 1 provides a graphic and tabular view of
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how lines and polygons are stored in this topological
data structure.

The DIME data structure evolved into the structure
employed for the Topologically Integrated Geographic
Encoding and Referencing (TIGER) files that are still
used by the Census Bureau to delineate population tab-
ulation areas. There are many advantages of the dual-
incidence data structure, and the wide acceptance of the
data structure combined with the comprehensive nature
of the TIGER files led to its status as the de facto stan-
dard for vector representations in GIS. Two elements of
this advance profoundly influenced the ability to con-
duct network analysis in GIS. First, the DIME structure
captures incidence, which is one of the primary topo-
logical properties defining the structure of networks. As
can be seen in Figure 1, all edges that are incident to a
given point can be determined with a simple database
query. Second, many of the features captured by the
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edges cross without a vertex at that location. Thus, at
Figure 2 Matrix-Based Network Data Structure every location where network features cross, a point
must exist in the database. This is true regardless of
whether or not a true intersection exists between the
network features, and it is most problematic when
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intersection, a road that may be commonly perceived
and used as a single feature must be represented as a
series of records in the data structure. This repetition
can increase the database size many times over and
can encourage errors in the database when these mul-
tiple features are assigned attribute values.

Pure Network Data Models

The limitations on the ability to perform network
analysis imposed when using common GIS data struc-
tures have necessitated the development of pure
network data models. These include nonplanar data
structures that relax planarity requirements in order to
more realistically model real-world networks, data
structures that support turns and directional con-
straints on edges in order to model the impedances
encountered when moving between and along net-
work features, and perhaps most important, data struc-
tures that allow more efficient operation of network
analysis procedures.

For many network operations, it is preferable to
store the topological properties of the network with
matrix representations. For the network shown in
Figure 2, the vertex adjacency matrix and vertex edge
incidence matrix are provided.

Matrix data structures allow for intuitive and rapid
query of network topological properties. However,
when the network is sparse (relatively few edges con-
necting the vertices), the matrix may require a great
deal of storage space to capture a small amount of
topological information. In these cases, list-based data
structures, such as the star data structure, may be
preferable. The star data structure is based on two lists.
The first is a list of the vertices with a pointer to a sec-
ond list. The second list holds a continuous string of
adjacencies for each of the vertices. The star data struc-
ture for the graph in Figure 2 consists of the vertex list
(see Table 1) and the adjacency list (see Table 2).

From these two arrays, adjacency information can
be found without storing extraneous information. This
structure has also proven to be the most efficient
structure for many network algorithms that depend on
searching for arcs from a given node.

The Future of
Network Data Structures

development of object-oriented data structures, the
introduction of dynamic networks, and the recogni-
tion that highly complex network structures are
applicable to a diverse set of disciplines. One can

expect to see these advances increasingly integrated
with GIS and GISci.

Kevin M. Curtin
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