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One of the defining objectives in location science is to maximize dispersion. Facilities

can be dispersed for a wide variety of purposes, including attempts to optimize com-

petitive market advantage, disperse negative impacts, and optimize security. With one

exception, all of the extant dispersion models consider only one type of facility, and

ignore problems where multiple types of facilities must be located. We provide ex-

amples where multiple-type dispersion is appropriate and based on this develop a

general class of facility location problems that optimize multiple-type dispersion. This

family of models expands on the previously formulated definitions of dispersion for

single types of facilities, by allowing the interactions among different types of facilities

to determine the extent to which they will be spatially dispersed. We provide a set of

integer-linear programming formulations for the principal models of this class and

suggest a methodology for intelligent constraint elimination. We also present results of

solving a range of multiple-type dispersion problems optimally and demonstrate that

only the smallest versions of such problems can be solved in a reasonable amount of

computer time using general-purpose optimization software. We conclude that the

family of multiple-type dispersion models provides a more comprehensive, flexible,

and realistic framework for locating facilities where weighted distances should be

maximized, when compared with the special case of locating only a single type of

facility.

Introduction

One of the defining objectives in location science is to maximize dispersion. Fa-

cilities can be dispersed for a wide variety of purposes, including keeping com-

petitors of the same franchise system apart, dispersing criminal rehabilitation

facilities from population centers, and locating nuclear power plants in such a

way as to maximize security. Even though a range of general dispersion models

have been developed, only one involves a combination of different types of facil-
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ities. This model is the regional energy facility location model of Church and Cohon

(1976). In that model, two different types of facilities, fossil fuel power plants and

nuclear power plants, were located simultaneously in a region where a number of

objectives were optimized, including dispersive terms. In the general case, when

locating facilities with an objective of maximizing dispersion, there may be more

than one type of facility to locate. For example, a dispersed configuration of missile

launch facilities should not coincide with the location of a dispersed pattern of

radio towers. A strike against one facility would compromise the others. The mo-

tivation for this work is based upon the fact that locating a facility of one type may

well be determined or influenced by the location of facilities of other types. The

primary objective of this article is to define a family of models for the simultaneous

location of multiple types of facilities where the facilities differ from one another in

some fundamental way, and these differences have an influence on the measure of

optimal dispersion.

In order to form the basis for this new family of models, we review the recent

location science literature involving the location of dispersed facilities. A set of

applications for dispersion models is described, several ways in which dispersion

can be measured are outlined, and several special cases of dispersion models are

recognized. Most importantly, this review highlights the long-recognized need for

(and lack of) discrete dispersion models involving multiple-type facilities. In the

third section this need is addressed through the presentation of a family of multiple-

type discrete dispersion models that builds on the existing foundation of discrete

dispersion in location science. A set of general models is presented, and special

cases are identified. In the fourth section we present some computational experi-

ence in solving this new class of models using a data set originally presented in

Kuby (1987). A summary of our results and a discussion of areas for future research

are provided in the sixth section.

A review of dispersion models in location science

Applications for dispersion models

Dispersion models can be applied over a spectrum of scales: macroscale applica-

tions include such things as the location of radio transmitters or defense installa-

tions over a large geographic region; mesoscale applications include the location of

schools, housing developments, landfills, or incinerators within a smaller, well-de-

fined geographic region; and microscale applications of dispersion can include

such things as product shelf location and factory or classroom layout studies.

By far the most common use of dispersion models is for the location of unde-

sirable facilities (Church and Garfinkel 1978; Drezner and Wesolowsky 1985; Erkut

and Neuman 1989; Drezner and Wesolowsky 1996). This literature is further di-

vided into the location of noxious and obnoxious facilities. Noxious facilities are

those that present some health risk to any population that would be exposed to

either the damaging repercussions of an accident at the facility or the damaging
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consequences of long-term exposure to the facility. Examples of noxious facilities

include coal-fired power stations, nuclear power plants, hazardous waste storage

sites, oil storage tanks, ammunition dumps, landfills, and incinerators. Obnoxious

facilities are not expected to cause health risks to populations, but they may have

(or be perceived to have) deleterious social or economic consequences associated

with their location and operation. Examples of obnoxious facilities include prisons,

activities that generate excessive noise, social service centers, and rehabilitation

(e.g., drug treatment) centers (Murray et al. 1998). Obnoxiousness may result in

disagreements between the facility operator and the local population that are based

on ideological or attitudinal conflict (Sorensen, Soderstrom, and Carnes 1984).

Facilities that are considered undesirable may have attributes that are both noxious

and obnoxious.

Metrics of dispersion

If dispersion is a reasonable objective to optimize, one may choose from several

known ways to quantify optimal dispersion. Erkut and Neuman (1990) made a

comparison of dispersion models based on the way these models defined maximal

dispersion. They employed a three-syllable naming convention to distinguish be-

tween different types of dispersion. Using this convention, the first syllable for each

model was ‘‘Max’’ denoting that all models attempt to maximize the amount of

dispersion among selected facility sites. Both the second and third syllables were

either ‘‘sum’’ or ‘‘min.’’ In the second syllable, a ‘‘sum’’ operator indicates a con-

cern with overall system performance while a ‘‘min’’ operator indicates a concern

for worst-case performance. In the third syllable ‘‘sum’’ or ‘‘min’’ refers to the

facility interactions considered for each facility. When the ‘‘min’’ operator is used,

the objective function is constrained by the minimum distance between each fa-

cility and any of its neighbors in a given solution. The ‘‘sum’’ operator indicates that

the distances from each facility to all other facilities will constrain the objective

function. In other words, the nomenclature tells one to maximize (1st operator) . . .

the sum or minimum (3rd operator) . . . of the summed or minimized distances (2nd

operator) between facilities.

Using this system, there are four possible permutations. The first of these is the

MaxMinMin problem, which seeks to maximize the minimum distance between

any two located facilities. This problem is referred to in the literature as the p-dis-

persion problem (Moon and Chaudhry 1984) and was first developed as an exten-

sion to the p-center problem (Shier 1977). Shier demonstrated that the p11-

dispersion problem is the dual of the p-center problem. An optimal solution to

the p-dispersion problem will locate p facilities such that the minimum distance

between any pair of facilities is maximized. Dispersion as defined by the MaxMin-

Min objective is concerned with any pair of locations that might be located near

each other and it will avoid such a situation at the expense of the overall system

spread. The NP-completeness of this problem has been demonstrated by a reduc-

tion to the clique problem (Erkut 1990). Additional formulations of this model with
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examples of applications and solution procedures are available in the literature

(Chandrasekaran and Daughety 1981; Kuby 1987).

A second definition of maximal dispersion is given by the MaxSumMin prob-

lem. This problem seeks to find a maximally dispersed set through the use of the

sum of the minimum distances between located facilities. This problem is known in

the literature as the p-defense problem and was identified by Moon and Chaudhry

(1984). With this dispersion objective two or more facilities could be optimally

located near to one another if doing so allows other facilities to be located ex-

tremely far away from their nearest neighbors, causing the sum of the minimum

distances to be larger. The measurement of performance is, however, still based on

the minimum distance between a facility and any of its neighbors.

The MaxMinSum objective deviates from the previous two objectives in that it

does not consider only the minimum distance between a located facility and its

nearest neighbor, but instead measures the distance between that facility and all

other located facilities. This distance can be thought of as a hub distance where the

facility located at site i is at the hub of a wheel, and the spokes of the wheel radiate

out from i to all other located facilities (Fig. 1). The MaxMinSum problem was

unknown in the literature until the review of dispersion objectives by Erkut and

Neuman (1990).

The fourth objective seeks the most global measure of dispersion yet presented.

The MaxSumSum problem shares the concept of the hub distance with the Max-

MinSum problem, but expands on that concept to maximize the sum of all of the

Figure 1. Hub distance versus minimum distance.
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hub distances for every located facility, rather than just trying to maximize the

smallest of those hub distances. This problem was first identified as an extension to

the one-facility maximum median (maxian) problem on a network (Church and

Garfinkel 1978). Termed the p-maxian problem, this model is described as an effort

to locate p facilities simultaneously far from a given set of nodes and also far from

each other. This definition hints at the need for multiple-type dispersion models in

that fixed locations, demand centers, and new facilities must be considered. Nine

years later a formulation was provided for the discrete maxisum problem, which

was the first to cast the problem in the context of dispersion (Kuby 1987). Kuby’s

formulation seeks to locate p facilities among n discrete nodes so as to maximize

the sum of distances between located facilities. Subsequently, a quadratic integer-

programming and a linear integer-programming formulation have been presented,

as well as both exact and heuristic solution procedures for special cases of this

problem (Erkut, Baptie, and von Hohenbalken 1990).

In summary, the basic dispersion models presented by Erkut and Neuman are

based on different objectives, and can therefore result in dramatically different lo-

cation patterns, all of which can be considered dispersed. These models are all

basic in the sense that there are no minimum or maximum required distances be-

tween facilities, there are no constraints on the number of facilities to be located

(the value of p) except the number of available facility locations, and there is no

distinction between new and existing facilities. It should be noted that, despite the

clear differences in the objectives and potential outcomes of the four objectives, it

is possible that, for particular instances of the problem, the difference between

the solutions generated by the different models may not be significant (Erkut and

Neuman 1990).

Special case models of dispersion

A number of dispersion models have been presented in the location science liter-

ature to address more specific instances of dispersion. These models consider ad-

ditional constraints on—or extensions to—some parameter of the more basic

models presented above. One of these, the r-separation problem, considers the

case, where as many facilities as possible must be located at least a given minimum

distance away from each other. That is, the minimum acceptable level of dispersion

is known in advance. Also known as the anticover problem (Moon and Chaudhry

1984), the r-separation problem is known to be NP-complete due to its equivalence

to the independent set problem in graph theory. A recent review of the r-separation

problem (Erkut and ReVelle 1996) provides six formulations and tests them for

computational efficiency.

As discussed in the context of the MaxSumSum problem above, another group

of special case discrete dispersion models include both new and existing facilities

in the determination of optimal location. This problem has been termed the p-an-

ticenter-dispersion model and formulated as a MaxMinMin problem (Erkut 1990).

The p-anticenter-dispersion problem can be reduced to the p-dispersion problem
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and thus is NP-complete as well. Although existing facilities can be considered a

second type of facility in comparison with a set of new facilities, the p-anticenter-

dispersion problem still only locates a single type of facility. The locations of ex-

isting facilities are considered when making the decisions to site new facilities, but

the model has no impact on their placement, and there is no differentiation of fa-

cility type between new and existing facilities. That is, the only difference between

new and existing facilities in the p-anticenter-dispersion problem is the time at

which they are located.

There also exist several models that involve different forms of dispersion met-

rics, other than the four basic models already described. One of these special cases

includes a formulation and solution procedure for locating a single point such that

the minimum distance from a given set of points is maximized (Dasarathy and

White 1980). Drezner and Wesolowsky (1985) consider a problem related to the

r-separation problem, where the dispersion of facilities is desirable but a given

maximum distance must not be exceeded . Other examples include a consideration

of facility interaction (Welch and Salhi 1997), impact models (Murray et al. 1998),

and risk-sharing models for locating undesirable facilities (Ratick and White 1988).

All of the basic dispersion models discussed by Erkut and Neuman (1990)

consider the location of p facilities among n possible facility sites. All of the facil-

ities to be located are of the same type, and there are no fixed facilities or other sites

representing interaction with the facilities (e.g., demand, population, or conflicting

uses). The formulations for the 1-Maxian on a network (Church and Garfinkel 1978)

and the discrete p-Maxian problem with existing facilities (Erkut, Baptie, and von

Hohenbalken 1990) demonstrate that the most general dispersion model must in-

corporate variance in both the number of facilities to be located and the number of

types of facilities to be located or considered in the solution. In other words, this

review of dispersion models in location science demonstrates that, although there is

a diverse set of models that cover a range of dispersion objectives, there is a need

for models that can locate two or more different types of undesirable facilities si-

multaneously. The following section addresses this need by formulating a family of

multiple-type dispersion models.

The family of multiple-type dispersion models

In order to formulate a family of multiple-type dispersion models, we begin by de-

scribing a method for capturing the differences between types of facilities. This

concept is used to derive formulations for multiple-type dispersion models with

several objectives. Additional special-case formulations are provided and as mul-

tiple-type dispersion models contain extensive constraint sets, a methodology for

the intelligent elimination of specific constraints will be explored.

Measure of repulsion

Intrinsic to the concept of multiple-type dispersion is the idea that facilities of dif-

ferent types vary in the extent to which they ought to be dispersed. We term this
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difference ‘‘repulsion.’’ If facilities of different types are identical in their repulsion

from one another, then they can be considered to be of the same type. Although it is

somewhat unintuitive, a smaller repulsion measure reflects a relatively greater sig-

nificance in the facility interactions than a larger repulsion measure does. Recall

that we are maximizing repulsion-weighted distance. As a smaller repulsion meas-

ure creates smaller repulsion weighted distances, this value is more binding on the

objective function value and reflects greater importance in terms of facility inter-

action. An example to demonstrate how repulsion measures can influence location

decisions is illustrated in Fig. 2.

In this example there are four potential locations for facilities at the corners of

the unit square. Two incinerators and two parks must be allocated to these discrete

locations in such a way as to maximize the minimum repulsion-weighted distance

between any two facilities (the MaxMinMin objective). All of these facility types

should be dispersed: parks should be dispersed to promote access to such amen-

Figure 2. Solutions based on repulsion-weighted distance.
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ities, incinerators should be dispersed to avoid excessive air pollution in any one

area, and parks should be dispersed from incinerators to avoid health hazards to

park patrons. Without any repulsion measures, all possible solutions give the iden-

tical objective function value. Assume, though, that the repulsion measure (i.e.,

repulsion weight or metric per unit distance) between two incinerators or two parks

is 0.5, and the repulsion measure between an incinerator and a park is 1. These

values suggest that it is more important to disperse incinerators and parks among

themselves than it is to disperse incinerators vis-à-vis parks. There are only two

significant solutions to this problem: (1) the facilities of like type are located ad-

jacent to each other or (2) they are located diagonally across the unit square. In the

first case there are two instances where the park-to-incinerator distance is 1, two

cases where the park-to-incinerator distance is 1.414, and both the park-to-park

distance and the incinerator-to-incinerator distance are 1. If these distances are

multiplied by the appropriate repulsion weights, the smallest value is generated by

the park–park distance of 1.00 and the incinerator–incinerator distance of 1.00,

each multiplied by a repulsion weight of 0.5 yielding a value of 0.5. Thus, the

minimum repulsion-weighted distance between any two facilities is 0.5. In the

second case all four park-to-incinerator distances are 1 and both the park-to-park

and incinerator-to-incinerator distances are 1.414. The minimum repulsion-weight-

ed distance is then 0.5 � 1.414 or 0.707. As this minimum value of 0.707 is greater

than the minimum value of 0.5 in the first case, the second solution is the optimal

solution for this problem instance.

In this example it is solely the measure of repulsion among the different types of

facilities that influences the optimal location pattern. Generally speaking, the no-

tion of a repulsion measure is simply a way of differentiating between types of fa-

cilities, and quantifying the interaction between those types. Each pairing of facility

types is assigned a value that reflects the extent to which the objective function

suffers as the distance between these two types of facilities decreases.

Naming convention and notation

With a structure in place to differentiate between types of facilities, we can for-

mulate a series of multiple-type dispersion models. The three principal variables

(number of facilities (p), number of types of facilities (t), and number of potential

facility sites (n)) are used to construct a naming convention for dispersion problems.

As an example, the p–t–n dispersion problem seeks to locate p facilities of t types

among n potential facility sites.

The formulations of these problems employ the following notation:
t 5 number of types of facilities
n 5 number of potential facility sites
K, L 5 indices for facility types
i, j 5 indices for potential facility sites
pK 5 number of facilities to locate of type K
Z 5 objective function to maximize
xK

i 5 1 if a facility of type K is located at candidate site i, 0 otherwise
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dij 5 the distance between candidate sites i and j
QKL 5 measure of repulsion between facilities of type K and of type L per unit

distance of separation
M 5 number larger than the largest distance between any two sites

P ¼
Xt

K¼1

pK

The p–t–n dispersion problem (general multiple-type dispersion problem)

The first formulation of the p–t–n dispersion problem seeks to locate pK facilities of

each of t different types, such that the minimum repulsion-weighted distance be-

tween any two facilities of any type is maximized. This corresponds to the single-

type MaxMinMin formulation identified by Erkut and Neuman (1990), which is an

extension of the formulation of Kuby (1987).

Max Z ð1Þ

Subject to:

Z � QKLdij þMð2� xK
i � xL

j Þ; i and j ¼ 1;2; . . . ; n; i 6¼ j;

K and L ¼ 1; 2; . . . ; t ; L � K
ð2Þ

Xt

K¼1

xK
i � 1; i ¼ 1; 2; . . . ; n ð3Þ

Xn

i¼1

xK
i ¼ pK ; K ¼ 1; 2; . . . ; t ð4Þ

xK
i ¼ 0 or 1; i ¼ 1; 2; . . . ; n; K ¼ 1; 2; . . . ; t ð5Þ

Constraints (2) force the value of the objective function Z to be less than or

equal to the minimum of the repulsion-weighted distances between any two facil-

ities of any type. A constraint exists for each pairing of potential facility locations

and each pairing of two types of facilities, with the exception that two facilities of

the same type cannot logically be located at the same location; that is, when both i

and j refer to the same potential facility location, the placement of two facilities of

the same type at that location would result in a weighted distance of 0, creating an

upper bound of 0 on the objective function. Additionally, it is not necessary to

include constraints when the value of L is less than the value of K, as doing so

would result in duplicate constraints. If either (or both) of the two facility locations

for a given constraint do not contain a facility of the type under consideration (if xK
i

or xL
j are equal to zero), then the objective function value Z need only be less than

or equal to a very large number added to the repulsion-weighted distance between

the facilities. When both potential facility sites under consideration are assigned a
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facility of the types under consideration, the term containing the very large number,

M, is equal to 0, and Z is constrained only by the repulsion-weighted distance be-

tween the facilities. As a constraint exists for all logical pairings of potential facility

locations, Z must be less than or equal to the minimum weighted distance between

any two facilities of any type. The sense of maximization in the objective function

(1) ensures that a solution will be sought which maximizes this minimum weighted

distance.

Constraints (3) ensure that only one type of facility can be located at any par-

ticular facility site. Constraint (4) ensures that exactly pK facilities of type K will be

located, and constraints (5) require that all decision variables are equal to either

0 or 1, guaranteeing an integer solution.

The MaxSumMin formulation of the p–t–n dispersion problem seeks to max-

imize the sum of the minimum repulsion weighted distances associated with each

of the selected facility locations and types and can be formulated as follows:

Max
Xn

i¼1

Zi ð6Þ

subject to:

Zi � QKLdij þMð1� xL
j Þ i and j ¼ 1; 2; . . . ; n; i 6¼ j; K and L ¼ 1; 2; . . . ; t ð7Þ

Zi � M
Xt

K¼1

xK
i ; i ¼ 1; 2; . . . ; n ð8Þ

Xt

K¼1

xK
i � 1; i ¼ 1; 2; . . . ; n ð9Þ

Xn

i¼1

xK
i ¼ pK ; K ¼ 1; 2; . . . ; t ð10Þ

xK
i ¼ 0 or 1; i ¼ 1; 2; . . . ; n; K ¼ 1; 2; . . . ; t ð11Þ

This formulation differs from the MaxMinMin formulation in that a value Zi —

representing the minimum repulsion-weighted distance from each i to another

facility location—is determined, and the maximum sum of these Zi values is the

objective. Constraints (7) differ from constraints (2) in the MaxMinMin formulation

in several respects. First the variable Zi is determined for each potential facility site i

rather than a global Z value that pertains to all facility sites. As in constraints (2),

constraints (7) force the value of Zi to be less than or equal to the minimum of the

repulsion-weighted distances between a facility of some type located at i and any

other facility of any type. When a facility of type L is located at potential facility site

j, Zi is constrained by the minimum repulsion-weighted distance from i to j. When

there is no facility of type L at potential facility site j ðxL
j ¼ 0Þ, Zi is constrained only
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by the repulsion-weighted distance between i and j, in addition to a very large

number, M. In order to ensure that a significant Zi value is generated only when a

facility is located at i, constraints (8) force Zi to be equal to zero if there is no facility

of any type located at i. As the objective function seeks to maximize the sum of Zi

values, these cases will not affect the optimal solution value. Note that in contrast to

the MaxMinMin formulation, a constraint of type (7) must be generated for all

combination of types K and L in order that the repulsion measures QKL can be ap-

plied to the appropriate combinations of facility types. As an example, although

Q12 and Q21 are still equal, the value of Q12dij þMð1� x2
j Þ is not necessarily equal

to the value of Q21dij þMð1� x1
j Þ. The constraints on the number of facility types

per potential facility location (9), the total number of facilities to be located of each

type (10), and the integrality of the decision variables (11) remain the same as those

described for the MaxMinMin formulation.

A third formulation can be based on the MaxMinSum objective and seeks to

maximize the minimum hub distance for any facility of any type:

Max Z ð12Þ

subject to:

Z �
Xn

j¼1
j 6¼i

Xt

L¼1

QKLdijx
L
j þMð1� xK

i Þ; i ¼ 1; 2; . . . ; n; K ¼ 1; 2; . . . ; t ð13Þ

Xt

K¼1

xK
i � 1; i ¼ 1; 2; . . . ; n ð14Þ

Xn

i¼1

xK
i ¼ pK ; K ¼ 1; 2; . . . ; t ð15Þ

xK
i ¼ 0 or 1; i ¼ 1; 2; . . . ; n; K ¼ 1; 2; . . . ; t ð16Þ

The hub distance associated with each located facility is the sum of the repul-

sion-weighted distances between that facility and all other located facilities. In this

formulation, constraints (13) serve to define the hub distance for each potential

facility location i. If no facility of type K is located at i, then Z will be allowed to be

a very large sum. When there is a facility of type K located at i, Z is constrained to

be less than or equal to the sum of the repulsion-weighted distances between i and

all those sites j, where a facility is also located. In those cases where a facility of

type L is not located at potential facility location j, then no weighted distance is

included in the sum. As pK facilities of each type must be located, the upper limit on

Z will be the minimum repulsion-weighted hub distance (over all facility types and

their specific locations). The objective function seeks to maximize this minimum

hub distance. Once again the constraints on facility types, number of facilities to

locate, and integrality are identical to those in the previous formulations.
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The final formulation for the p–t–n dispersion model seeks to maximize the sum

of the hub distances from all located facilities to all other located facilities (Max-

SumSum).

Max
Xn

i¼1

Xt

K¼1

Xt

L¼1

ZKL
i ð17Þ

subject to:

ZKL
i �

Xn

j¼1
j 6¼i

QKLdijx
L
j ; i ¼ 1; 2; . . . ; n; K and L ¼ 1; 2; . . . ; t ð18Þ

Z KL
i � MxK

i ; i ¼ 1; 2; . . . ; n; K and L ¼ 1; 2; . . . ; t ð19Þ

Xt

K¼1

xK
i � 1; i ¼ 1; 2; . . . ; n ð20Þ

Xn

i¼1

xK
i ¼ pK ð21Þ

xK
i ¼ 0 or 1; i ¼ 1; 2; . . . ; n; K ¼ 1; 2; . . . ; t ð22Þ

Rather than determining a single minimum hub distance value as in the Max-

MinSum formulation, the MaxSumSum formulation requires that a ZKL
i value be

determined for each possible combination of facility types at a given potential fa-

cility location i. These minimum hub distances are determined by constraints (18).

When a facility of type L is located at facility site j, the minimum repulsion-weight-

ed distance from i to j is included in the sum, weighted by QKL. Constraints (19)

ensure that ZKL
j will only be greater than 0 when a facility of type K is located at

facility site i. Consider the example where there are only two types of facilities to

locate. In this case, the hub distance for a given facility consists of two ZKL
I values—

ZK1
i and Z K2

i . The objective function seeks to maximize the sum of these repulsion-

weighted hub distances.

The general models given above identify the basic cases for a family of mul-

tiple-type dispersion problems. Within that framework there are a wide range of

more specific problems that can be formulated. Due to the limited space available

here, only a few of the possible models within the family are presented.

Dispersion layout problems

The layout problem is an extensively studied combinatorial optimization problem

that is generally formulated to determine the ideal physical organization for a pro-

duction system (Meller and Gau 1998). The layout problem is frequently formulated

as a quadratic assignment problem (QAP) where every department is assigned to

one location and only one department is assigned to any one location. To explain
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the rationale for a dispersive objective within a layout context, consider the ex-

ample of different types of chemicals used for processes within a single factory that

may have violent reactions when they come in contact with each other. The chem-

icals must all have a place in the production line, but reactions might best be

avoided by maximally dispersing the chemicals inside the factory walls.

Although several dispersion versions of QAP layout formulations have been

constructed (Curtin 2002), we present here only a single layout dispersion problem

with the MaxMinMin objective where the number of facilities to locate, the number

of possible types of facilities, and the number of potential facility locations are all

equal. We term this problem the p–p–p dispersion problem or the p-type dispersion

layout problem.

Max Z ð23Þ

subject to:

Z � QKLdij þMð2� xK
i � xL

j Þ i; j;K and L ¼ 1; 2; . . . ; p; i 6¼ j; L � K ð24Þ

Xp

i¼1

xK
i ¼ 1; K ¼ 1; 2; . . . ; p ð25Þ

Xp

K¼1

xK
i ¼ 1; i ¼ 1; 2; . . . ; p ð26Þ

xK
i ¼ 0 or 1; i ¼ 1; 2; . . . ; p; K ¼ 1; 2; . . . ; p ð27Þ

This formulation differs from the p–t–n dispersion problem in that both the

constraints on the number of types of facilities to be located (25) and the number of

facilities to locate at each potential facility site (26) are equality constraints. As

there are exactly p potential facility sites, each site will have a unique facility type

located.

Neighborhood constraint elimination

The constraints in the formulations for a family of multiple-type dispersion models

consider virtually all of the possible combinations of facility sites and potential

types of facilities at those locations. Certain combinations of facility type and sites

locations may result in duplicate constraint conditions. It is a relatively straightfor-

ward task to eliminate such duplicate conditions. More importantly, it can be

shown that for those objectives that seek to maximize minimum distances (Max-

MinMin and MaxSumMin) there are certain facility interactions that cannot logi-

cally constrain the problem. The removal of these constraints effectively decreases

the size of the problem to be solved and therefore would intuitively decrease the

time or resources needed to find an optimal solution.

In order to understand this logical elimination of constraints, first consider

the case where three facilities of a single type are to be located according to the
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MaxMinMin objective. Assume further that the potential facility sites in the region

lie along a straight line (see Fig. 3).

The formulation for the general multiple-type dispersion problem with the

MaxMinMin objective given above would generate a constraint of type (2) for each

(i, j) pair where i is not equal to j. As in this simplified instance we are considering a

single type of facility, L and K both will have a value of 1, so additional constraints

would not be generated based on differences in type. Within this simplified prob-

lem framework consider only the case where a single facility is located at potential

facility site, i. As three facilities are to be located, there must be two facilities lo-

cated in addition to site i. In order to locate these additional two facilities in such a

way as to achieve the greatest possible minimum distance from i, they must be

located at the potential facility sites labeled b and c in Fig. 3. With this arrangement

the maximum minimum distance from i to any other located facility is the distance

from i to b. There is no possible way that the distance from i to c will ever be the

minimum distance from i to another located facility so there is no need to generate

a constraint for the pair (i, c).

If a total of four facilities are to be located (one at potential facility site i and

three others) then no constraints are needed for either the pair (i, b) or the pair (i, c)

as neither of those pairings can logically constrain the problem. In general, for a

problem with a single type of facility to be located, where p facilities are to be

located, the (p-2) furthest potential facility sites j from each potential facility site i

do not need to be considered when generating constraints. That is, any potential

facility site that lies outside the logical neighborhood of site i need not be con-

sidered. Conversely, constraints need only be generated for the (n� p11) closest

potential facility sites j to each potential facility site i. In other words, only consider

those facilities within the logical neighborhood of i. This concept was originally

developed in order to streamline the solution of large p-median problems (Rosing,

Revelle, and Rosing-Vogelaar 1979).

Expanding this concept to problems seeking to optimally disperse multiple

types of facilities, the potential facility sites for which constraints need not be

Figure 3. Linear problem demonstrating neighborhood constraint elimination.
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generated are not simply those sites that are the furthest distance from a given site i.

The repulsion-weighted distance between each i and each j must be considered,

and this weighted distance varies with the type of facility being considered for each

potential facility site. Therefore, for a facility of type K located at potential facility

site i, there are certain combinations of sites j and types L that will have the p-2

greatest weighted distances where j is unique for each combination. Finding these

site–type combinations determines the maximum possible minimum distance from

i or the boundary of the logical neighborhood of i. However, given that there are

multiple types of facilities to be located there may be additional site–type combi-

nations that result in a weighted distance greater than the p-1st furthest site–type

combination when j is not unique. One need not generate constraints for any of

these site–type combinations.

In order to clarify this concept, consider a problem instance where four

facilities of three different types are to be located. Pick a single potential facility

site i and assign it a facility of type K. Pick any single one of the remaining sites

and call it j. As three types of facilities are being located there are three

different possible jL combinations that can be used to create a repulsion-weight-

ed distance in combination with the site–type iK and for which constraints would be

generated in the absence of constraint elimination. As four facilities are to be lo-

cated, constraints for the two (p-2) iKjL tuples (each tuple being a group of i, j, K, and

L in combination) that have the greatest weighted distances can be eliminated.

They cannot possibly constrain the objective function value Z. Moreover, these

values have defined the logical boundary of the neighborhood of the site–type

combination iK.

To see why this is true, pick another of the remaining potential facility sites j. If

any jL combination has a repulsion-weighted distance from iK that exceeds the

logical boundary set by the previous j under consideration, then those constraints

also cannot possibly constrain the solution and can thus be eliminated from the

problem formulation. It may in fact be that all of the jL combinations for this second

j fall beyond the logical boundary set by the first j. Then consider that this could be

true for any of the remaining values of j.

In general, there exists a single logical boundary value ðBK
i Þ for each iK

combination that can be determined by finding the p-2 smallest maximum dis-

tances from that iK to any j. Any jL site–type combination that has a weighted

distance value greater than those smallest maximum distances lies outside

the logical boundary and the associated constraints are unnecessary. While

the p-2 rule is used to define this boundary the actual number of constraints that

can be eliminated is not a direct function of p, but is instead a function of the

distances between potential facility sites and the repulsion measures between

facility types.

In order to incorporate the concept of neighborhood constraint elimination into

the notation given for the family of multiple-type dispersion problems, consider the

set EK
i which contains those site–type combinations jL that exceed the maximum
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possible minimum distance (are outside the logical neighborhood of site i). Or:

EK
i ¼ fjLjjL is outside the log ical neighborhood of ig

The set of constraints (2) in the MaxMinMin formulation and (7) in the Max-

SumMin formulation can then be modified to

Z � QKLdij þMð2� xK
i � xL

j Þ; i and j ¼ 1; 2; . . . ; n; i 6¼ j; K and L ¼ 1; 2; . . . ; t ;

L � K ; jL=2EK
i

ð28Þ

and

Zi � QKLdij þMð1� xL
j Þ; i and j ¼ 1; 2; . . . ; n; i 6¼ j; K and L ¼ 1; 2; . . . ; t ;

jL=2EK
i ;

ð29Þ

respectively. In the following section a comparison is given for both the general

formulation and the formulation with neighborhood constraint elimination to dem-

onstrate the differences in problem size when employing this process.

Solving multiple-type dispersion models

Large instances of integer programs such as those formulated in the previous sec-

tions can be difficult or impossible to solve optimally. However, using integer pro-

gramming and branch and bound techniques, optimal solutions can be obtained for

small problem instances. Heuristic techniques can be developed to solve larger

problem instances. In this section we present the results of general-purpose integer-

linear programming software in solving multiple-type facility location dispersion

models. We utilized the same data set that was used in Kuby (1987). It consists of 25

points on a Cartesian plane and is depicted in Fig. 4. Interpoint distances are

Euclidean.

Using this data set, optimal solutions were sought for a set of 212 multiple-type

dispersion problem instances. This set includes 53 instances for each of the four

objectives described above. Each set of 53 problems includes instances with values

for p ranging from 2 to 10, and values of t ranging from 1 to 9. The lower limit on p

is necessary as every solution to any dispersion model that maximizes distance

between facilities is trivial when P 5 1. The lower limit on t (the number of types of

facilities to locate) was chosen in order to validate the solution procedure against

previously published results, and the upper limit on t was a function of the value of

p (in these solutions at least one of each type of facility must be located

in order to encourage solutions with multiple types of facilities, so t must be

less than p).
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As repulsion measures for facility type pairings must be assigned exogenously

with respect to the models, and as the concept of repulsion measures has never

previously been implemented, a variety of values were chosen arbitrarily (Table 1).

The problem instances outlined above were formulated using the mathematical

programming system format by a program coded in Visual C11. Each problem

instance was then solved on a Sun workstation running SunOS 5.7, using CPLEX

(version 7.0). In some cases an optimal solution could not be found. This happened

either when the memory required for the branch and bound tree

exceeded 500 MB or the routine reached a time limit of 1 day.

While it is not reasonable to present the results of solving all 212 problems in-

dividually due to space constraints, we will give a summary of the results here. In

general, optimal solutions could not be determined for the largest problems attempt-

ed. This was true for all of the four objective functions. Unless there are dramatic

improvements in either the structure of the problems or the efficacy of the solution

procedures, only small instances of multiple-type dispersion problems will be able to

be solved optimally using general-purpose linear-integer programming procedures.

As expected, within the problems solved for any of the particular objectives,

the solution times generally increase with an increase in the value of either t or p.
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Figure 4. Twenty-five-node data set.
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There are several exceptions, however. In the MaxMinSum problem subset those

problems where the value of p equals the value of t are easier to solve than in-

stances with smaller values of p and t. This may be the case with the MaxSumMin

and MaxSumSum objectives as well, but these problems are so difficult to solve

Table 1 Repulsion Measures

T Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q22 Q23

2 0.2 0.4 0.6

3 0.2 0.3 0.4 0.5 0.6

4 0.5 1.0 0.5 0.33 0.5 1.0

5 0.5 1.0 0.5 0.33 0.25 0.5 1.0

6 0.5 1.0 0.5 0.33 0.25 0.2 0.5 1.0

7 0.5 1.0 0.5 0.33 0.25 0.2 0.167 0.5 1.0

8 0.5 1.0 0.5 0.33 0.25 0.2 0.167 0.143 0.5 1.0

9 1000 1.0 0.5 0.33 0.25 0.2 0.167 0.143 0.125 1000 1.0

T Q24 Q25 Q26 Q27 Q28 Q29 Q33 Q34 Q35 Q36 Q37

2

3 0.7

4 0.5 0.5 1.0

5 0.5 0.33 0.5 1.0 0.5

6 0.5 0.33 0.25 0.5 1.0 0.5 0.33

7 0.5 0.33 0.25 0.2 0.5 1.0 0.5 0.33 0.25

8 0.5 0.33 0.25 0.2 0.167 0.5 1.0 0.5 0.33 0.25

9 0.5 0.33 0.25 0.2 0.167 0.143 1000 1.0 0.5 0.33 0.25

T Q38 Q39 Q44 Q45 Q46 Q47 Q48 Q49 Q55 Q56 Q57

2

3

4 0.5

5 0.5 1.0 0.5

6 0.5 1.0 0.5 0.5 1.0

7 0.5 1.0 0.5 0.33 0.5 1.0 0.5

8 0.2 0.5 1.0 0.5 0.33 0.25 0.5 1.0 0.5

9 0.2 0.167 1000 1.0 0.5 0.33 0.25 0.2 1000 1.0 0.5

T Q58 Q59 Q66 Q67 Q68 Q69 Q77 Q78 Q79 Q88 Q89 Q99

2

3

4

5

6 0.5

7 0.5 1.0 0.5

8 0.33 0.5 1.0 0.5 0.5 1.0 0.5

9 0.33 0.25 1000 1.0 0.5 0.33 1000 1.0 0.5 1000 1.0 1000
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optimally that only one example exists in each case to suggest this property. Ad-

ditionally, for the MaxMinSum objective, those problems with a t value of 4 are

substantially easier to solve than problems of smaller size. This may be simply a

function of the underlying data set, but this property deserves further investigation.

A comparison among the four objectives shows that the MaxMinSum objec-

tive—which has the most compact formulation with the smallest number of con-

straints—is the easiest to solve and consequently has the lowest solution times

(Fig. 5). The results suggest that applications of dispersion problems with up to five

types of facilities can be solved on small datasets using the formulation presented in

this article for the MaxMinSum objective.

Conversely, the MaxSumMin objective function is the most difficult to solve

with the largest number of constraints. Even the p-dispersion problem where P 5 10

where only a single type of facility is being located cannot be solved even after

processing for a full day. It is therefore not practical to solve multiple-type disper-

sion problems of even modest size with the MaxSumMin formulation (Fig. 6), using

general-purpose optimization software.

The results for the MaxSumMin objective demonstrate the need to test alternate

formulations such as the logical neighborhood constraint elimination described in

the previous section. When constraint elimination was applied to those problems

that had been solved optimally for the MaxMinMin and MaxSumMin objectives,

the results were mixed. Figs. 7 and 8 show the percent reduction (or % increase) in

solution time with and without neighborhood constraint elimination. Consider first
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Figure 5. MaxMinSum solution times.
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the MaxMinMin objective: of the 41 problems for which optimal solutions have

been found, 24 can be solved more quickly when neighborhood constraint elim-

ination has been employed. The improvement ranges from less than 5% to more

than 75%. However, 16 problems took longer to solve even though the same
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Figure 6. MaxSumMin solution times.

% Drop in Solution Time - MaxMinMin

−200

−150

−100

−50

0

50

100

2-
1

3-
1

3-
3

4-
2

4-
4

5-
2

5-
4

6-
1

6-
3

6-
5

7-
1

7-
3

7-
5

7-
7

8-
2

8-
4

8-
6

8-
8

9-
2

10
-1

10
-3

Problem (p-t values below the X-axis)

%
 D

ro
p

Figure 7. Percent decrease in solution time with neighborhood constraint elimination for the

MaxMinMin objective.

Location Models for Multiple-Type Discrete DispersionKevin M. Curtin and Richard L. Church

267



number or fewer constraints were used to define the problem. Note that for display

purposes the outlying value for the problem where P 5 8 and t 5 7 has been elim-

inated from Fig. 7. This problem took more than eight times longer to solve than it

had when no constraint elimination had been applied. Similar results are found for

the MaxSumMin objective where 8 of 15 problems were solved more quickly after

the application of neighborhood constraint elimination.

As problem size has been reduced using constraint elimination rules for all but

the smallest problems with the MaxMinMin and MaxSumMin objectives, it could

be expected that all problems would experience a decrease in solution time. It

appears that although the reduction in the number of constraints reduces the matrix

inversion time, this is sometimes offset by an increase in the branch-and-bound

iterations needed to determine integer solutions. While neighborhood constraint

elimination is a promising avenue for developing more efficient formulations, the

determination of problem instances where it is likely to succeed is an area that

requires further research.

Conclusions and future research

This research has addressed a need, identified in the review of the literature sur-

rounding discrete dispersion in location science, for models of discrete dispersion

that could deal with multiple types of facilities where maximal dispersion is a

function of the interactions among those facilities. This was accomplished through

the development of a family of multiple-type dispersion models. Formulations have

been provided here that employ four different dispersion objective functions, and

several special cases have also been discussed. It has been shown that the spatial

structure of the problems can be used to identify a logical neighborhood around
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potential facilities and to eliminate unnecessary constraints from individual in-

stances of the problem. The range of problem instances that can be solved opti-

mally with a reasonable amount of computational effort was found to be relatively

small.

We believe that the family of multiple-type dispersion problems provides a

more flexible and robust set of tools for solving location problems where distance

should be maximized. This family encompasses the single-type dispersion models

that have previously appeared in the literature and treats them as special cases. This

expansion should allow for increased diversity in the application of dispersion

models. This research has suggested several avenues for future research, including

experimentation with different constraint sets (including capacity constraints), the

development of heuristics for those problems that cannot be solved optimally using

current commercial codes, and the development of a greater understanding in-

volving the nature of interaction and repulsion between different types of facilities.

References

Chandrasekaran, R., and A. Daughety. (1981). ‘‘Location on Tree Networks: p-Center and

n-Dispersion Problems.’’ Mathematics of Operations Research 6, 50–57.

Church, R. L., and J. L. Cohon. (1976). Multi-Objective Location Analysis of Regional Energy

Facility Siting Problems. Upton, NY: Brookhaven National Laboratory.

Church, R. L., and R. Garfinkel. (1978). ‘‘Locating an Obnoxious Facility on a Network.’’

Transportation Science 12, 107–18.

Curtin, K. M. (2002). Models for Multiple-Type Discrete Dispersion. Department of

Geography. Santa Barbara, CA: University of California.

Dasarathy, B., and L. J. White. (1980). ‘‘A Maxmin Location Problem.’’ Operations Research

28, 1385–401.

Drezner, Z., and G. O. Wesolowsky. (1985). ‘‘Location of Multiple Obnoxious Facilities.’’

Transportation Science 19(3), 193–202.

Drezner, Z., and G. O. Wesolowsky. (1996). ‘‘Obnoxious Facility Location in the Interior of a

Planar Network.’’ Journal of Regional Science 35(4), 675–88.

Erkut, E. (1990). ‘‘The Discrete p-Dispersion Problem.’’ European Journal of Operational

Research 46(1), 48–60.

Erkut, E., T. Baptie, and B. von Hohenbalken. (1990). ‘‘The Discrete p-Maxian Location

Problem.’’ Computers and Operations Research 17(1), 51–61.

Erkut, E., and S. Neuman. (1989). ‘‘Analytical Models for Locating Undesirable Facilities.’’

European Journal of Operational Research 40, 275–91.

Erkut, E., and S. Neuman. (1990). ‘‘Comparison of Four Models for Dispersing Facilities.’’

INFOR 29(2), 68–86.

Erkut, E., and C. ReVelle. (1996). ‘‘Integer-Friendly Formulations for the r-Separation

Problem.’’ European Journal of Operational Research 92(2), 342–51.

Kuby, M. J. (1987). ‘‘Programming Models for Facility Dispersion: The p-Dispersion and

Maxisum Dispersion Problems.’’ Geographical Analysis 19(4), 315–29.

Meller, R. D., and K.-Y. Gau. (1998). ‘‘The Facility Layout Problem: Recent and Emerging

Trends and Perspectives.’’ Journal of Manufacturing Systems 15(5), 351–66.

Location Models for Multiple-Type Discrete DispersionKevin M. Curtin and Richard L. Church

269



Moon, I. D., and S. S. Chaudhry. (1984). ‘‘An Analysis of Network Location Problems with

Distance Constraints.’’ Management Science 30(3), 290–307.

Murray, A. T., R. L. Church, R. A. Gerrard, and W. S. Tsui. (1998). ‘‘Impact Models for Siting

Undesirable Facilities.’’ Papers in Regional Science 77(1), 19–36.

Ratick, S. J., and A. L. White. (1988). ‘‘A Risk Sharing Model for Locating Noxious Facilities.’’

Environment and Planning B 15, 165–79.

Rosing, K. E., C. ReVelle, and H. Rosing-Vogelaar. (1979). ‘‘The p-Median and its Linear

Programming Relaxation: An Approach to Large Problems.’’ Journal of the Operational

Research Society 30, 815–23.

Shier, D. R. (1977). ‘‘A Min–Max Theorem for p-Center Problems on a Tree.’’ Transportation

Science 11(3), 243–52.

Sorensen, J. H., J. Soderstrom, and S. A. Carnes. (1984). ‘‘Sweet for the Sour: Incentives in

Environmental Mediation.’’ Environmental Management 8(4), 287–94.

Welch, S. B., and S. Salhi. (1997). ‘‘The Obnoxious P Facility Network Location Problem

with Facility Interaction.’’ European Journal of Operational Research 102(2), 302–19.

Geographical Analysis

270


